
Discovering API Usability Problems at Scale
Emerson Murphy-Hill∞, Caitlin Sadowski♥, Andrew Head�,

John Daughtry♥, Andrew Macvean♥, Ciera Jaspan♥, and Collin Winter♥∗
∞North Carolina State University, ♥Google, �University of California, Berkeley

emerson@csc.ncsu.edu,supertri@google.com,andrewhead@berkeley.edu
{daughtry,amacvean,ciera,collinwinter}@google.com

ABSTRACT
Software developers’ productivity can be negatively impacted by
using APIs incorrectly. In this paper, we describe an analysis tech-
nique we designed to find API usability problems by comparing
successive file-level changes made by individual software develop-
ers. We applied our tool, StopMotion, to the file histories of real
developers doing real tasks at Google. The results reveal several
API usability challenges including simple typos, conceptual API
misalignments, and conflation of similar APIs.
ACM Reference Format:
EmersonMurphy-Hill∞, Caitlin Sadowski♥, AndrewHead�, JohnDaughtry♥,
Andrew Macvean♥, Ciera Jaspan♥, and Collin Winter♥. 2018. Discovering
API Usability Problems at Scale. In Proceedings of International Workshop
on API Usage and Evolution (WAPI’18). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Usable APIs are important. Egele and colleagues found that API
misuse is widespread, with 88% of applications in the Google Play
store having at least one API usage mistake [3]. The authors sug-
gest that the problem could be mitigated had the API designers
made more usable API choices, such as by providing better default
values and documentation. Security is one aspect of programming
where API usability makes a clear difference, but other domains like
reliability and performance may also suffer from poor API usability.

Researchers have created several labor-intensive methods of un-
covering API usability issues, including user-centered design [12],
heuristic evaluation [2], peer review [8], lab experiments [13], and
interviews [11]. While these approaches can uncover important
problems, they cannot be expected to scale up to uncover usability
issues across a broad sample of programmers using dozens of APIs.

Researchers have created four main techniques for uncovering
API usability issues at scale. The first is conducting surveys [9];
while this approach can scale up to a large number of developers, it
requires social capital on the part of researchers to elicit responses
and effort on the part of busy developers. Moreover, it can only work
effectively if respondents have sufficient memory recall of the API
usability challenges they’ve faced in the past, a problem regularly
∗This work took place while EmersonMurphy-Hill was a Visiting Scientist and Andrew
Head was an Intern at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAPI’18, June 2018, Gothenburg, Swedon
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

explored in the social sciences (e.g. [6]). The second technique is
to investigate API usability challenges by summarizing them on
public discussion forums, like StackOverflow [9]. The disadvantage
is that this technique requires developers to be sufficiently reflective
and sufficiently blocked to bother posting a question about the
API that they’re using. The third technique is mining software
repositories such as the Google Play store or GitHub to look for
instances of API misuse [3]. While this approach scales well, such
techniques elide a large amount of valuable software evolution data
that happened between commits or releases [10]. The fourth scalable
technique is mining data provided by “try it out” web API platforms,
where researchers can look at 404 errors that indicate which APIs
developers have problems with [7]. However, this approach does
not reveal what those problems are.

Our insight is that before a developer correctly uses an API, they
may struggle to find the right way to use that API. That struggle
reveals the nature of the API usability problem. We capitalize on
this insight by creating a technique that we call StopMotion. Stop-
Motion analyzes snapshots of developers’ work history – typically
on every editor save – to reconstruct API usability challenges. By
comparing adjacent snapshots, StopMotion finds instances where
developers replace one API call with another. When multiple de-
velopers replace one API call with another, we infer that there is
something confusing about the underlying API. Our approach is
a promising approach to discover API usability problems at scale,
inexpensively, and at a high level of granularity.

This paper contributes a sketch of this new approach and initial
results. We next discuss our approach, describe our experience in
applying it at Google, and discuss some areas for future work.

2 APPROACH
The goal of StopMotion is to identify API usability problems auto-
matically. It works in several steps, which we describe below.

The first step is to identify code patches of interest. At Google,
patches are peer reviewed before being merged into the company’s
main codebase. Patches containmetadata, such as the person propos-
ing the change, when the change was proposed, and the files that
the patch changes. Our tool selects recent patches that change at
least one existing Java file.

The second step is to identify all edits that have gone into a patch.
For most software development at Google, file versions are recorded
automatically by a FUSE-based file system, such that every save
from the developer’s editor will be recorded as a separate version.
Furthermore, some editors at Google save automatically at regular
intervals, such as every 30 seconds. To access this data, we process
the workspace associated with the patch. The workspace contains
a history of every file changed in that workspace by a developer.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

WAPI’18, June 2018, Gothenburg, Swedon Murphy-Hill, Sadowski, Head, Daughtry, Macvean, Jaspan, and Winter

Sometimes developers create a new workspace for each patch, but
workspaces may also be reused for multiple patches. To deal with
workspace reuse, we analyze only the files changed in association
with the patch by analyzing the changes between when the patch
was submitted for peer review and when the developers’ prior patch
was merged into the main codebase.

For each edit, we analyze each file that was changed to its prior
version. To find changes to API client code, we use the abstract
syntax tree (AST) differencing tool, Gumtree [5], which for Java uses
Eclipse’s Java Development Toolkit (JDT) as a back end. We found
that Gumtree often produces inaccurate results when syntax errors
are present. We also found that many snapshots contained errors,
and we discard such snapshots. Through manual inspection, we
observed that if we excluded programs with errors, we would miss
many interesting API usability problems, such as when a developer
has typed the name of the method they want to call, but has not yet
added the parentheses and semicolon that would make the program
syntactically valid. However, we judged the false positive rate was
too high to continue analysis when errors are present.

Our approach looks for particular fixed patterns of client API
changes. Our tool currently detects two similar patterns:

• The developer changes amethod call, in the form obj.a(...)
to obj.b(...). The tool records the fully qualified type of
object and the method name before and after.

• The developer changes a static method call, in the form
Class.a(...) to Class.b(...). The tool records the fully
qualified class name, and the two method names.

The tool also records timestamps of when these changes occured,
who made the changes, and the associated patch.

3 STUDY
3.1 Methodology
We ran our tool in an informal study at Google on a single multicore
workstation. We analyzed the most recent changes from thousands
of developers working on real development projects over several
weeks in July of 2017. We analyzed the output of the tool manually.
There was a long tail of results – many changes were made only
once in our analysis period, so we discarded these results in our
analysis. In the reporting in this paper, we include some count data,
in the form (n = . . .) to give a rough estimate of frequency with
which changes occurred.

3.2 Collections
Collections are one of the most commonly used APIs at Google.
Google developers use both an open source Google version of
collections (com.google.common.collect) and Java collections
(java.util).

One of the most common changes we observed (n = 174) is
changing an immutable collection, such as ImmutableList, from
calling the method of to copyOf. Both methods are static and return
an instance of the collection. The method of takes any number of
arguments of type T, and copyOf takes different kinds of collections
of T (array, Iterator, Iterable, Collection). Our intuition
about the of/copyOf change is that the names of the methods don’t
distill the essence of the difference between the two.

A similar change (n = 81) was changing a Java collection’s
instance method add to addAll. These methods add an item of
type T to the collection and add a collection of items of type T,
respectively. Again, these methods are conceptually similar, but
arguably do a better job than of/copyOf of conveying their purpose.
One might posit a simpler solution of overloading the methods so
as they are all called add; however, this would remove the ability
to create collections of collections.

Another common change (n = 150) was changing a call to size
to isEmpty. While these two methods have quite different return
values, why a developer might make this change is clear; in a
conditional with a collection c, if(c.size()==0) is made more
intention-revealing by writing if(c.isEmpty()). This refactor-
ing is suggested by a popular static analysis tool at our company.
The relative infrequency of changes from isEmpty to size (n = 22)
provides some confirmation of this interpretation. Similarly, we
observed developers changing add to put on maps (n = 56). And
likewise, add does not exist in Map, but does in other collections.

3.3 Protocol Buffers
Remote procedure calls are critical to Google given the number of
calls being made. When you make 10 billion API calls every second,
optimizing calls is important [1]. Protocol buffers are a language
neutral structure optimized for serialization. Given that protocol
buffers are focused on serialization, they have their own repre-
sentation of a byte string (com.google.protobuf.ByteString).
We found evidence of confusion about how to copy data into a
ByteString. There are 8 differentmethods that start with thewords
copyFrom. We find evidence of programmers using copyFrom and
later changing their method call to copyFromUtf8 (n = 27). Inter-
estingly, the specificity of copyFromUtf8 is a design choice that
wasn’t required, as there is no corresponding copyFrom(String)
method on the class.

3.4 Optional
One of the most common APIs that our tool returned results for was
java.util.Optional and com.google.common.base.Optional
(fromGoogle’s Guava libraries), whichwe’ll refer to as Java Optional
and Guava Optional, respectively. Both of these Optional classes
serve the same purpose; wrapping an object so that it is possible to
check for whether the object has been set via an explicit API call
without resorting to using null values, which can lead to runtime
exceptions. Although Java Optional is recommended for new code,
Google developers use both Optional APIs since Guava Optional
predates Java Optional and there is a lot of legacy code. Here is
an example use of how either Optional class might be used:

Opt iona l < S t r i ng > o p t S t r = g e t S t r i n g () ;
i f (o p t S t r . i s P r e s e n t ()) {

r e t u r n o p t S t r . g e t () ;
}

Figure 1 shows a graph that illustrates API usability challenges
using the two Optional APIs. This graph was created using man-
ually filtered data from StopMotion, fed into GraphViz [4], then
tweaked manually for visual clarity. The graph should be read as:

Discovering API Usability Problems at Scale WAPI’18, June 2018, Gothenburg, Swedon

absent

fromNullable

empty

of

isPresentofNullable

or

orNull

orElse

ifPresent

map

orElseGet

flatMap

get

abset

isEmpty

isAbsent present

Figure 1: Changes in clients using Optional APIs.

• Nodes represent methods on one of the two APIs. Yellow
methods exist in Guava Optional; blue methods on Java
Optional; blue-yellow gradient methods exist in both APIs;
and grey methods do not exist in either. For example, the
method of exists in both Java and Guava Optional, but
isEmpty exists in neither.

• Edges from method a to method b represent developers call-
ing a in one snapshot, then calling b in the next. The edge
color indicates the type of object the developer is using, ei-
ther Java or Guava’s Optional. For example, the topmost
edge in the graph represents developers who had a Guava
Optional object, called a non-existent abset method, but
then changed it to a call to absent.

• Edge thickness represents the number of instances of the
indicated change. The edge weight is calculated as loд2(n) −
1, where n is the number of instances of the change. The
thickest edge (absent to emptywith a Java Optional object)
represents 189 changes. Multiple changes may have been
made by the same developer.

• Dashed edges represent sister methods of equivalent or ap-
proximately equivalent functionality. For example, absent
and empty are equivalent methods on each API.

• For simplicity, only changes that occurred more than 3 times
times are shown.

• The plot does not explicitly distinguish between static and
instance methods, though they are visible implicitly; the
subgraph in the upper left represent static methods, and the
subgraph in the lower right represent instance methods.

The graph illustrates several confusions Google developers have
about using these APIs: Developers confuse one Optional API for
the other, as evidenced by looking at the sister methods. For exam-
ple, developers often interchange fromNullable and ofNullable,
given their similar names. Likewise, they interchange absent and
empty. The case of Java’s orElse and Guava’s or and orNull is
similar, but somewhat more complicated. Overall, the similarity –
but not exact similarity – between these two APIs appears to be
regularly confusing to developers.

The abset node indicates a simple – but repeated – typo, where
developers intend to be calling Guava Optional’s absent. For
both APIs, many developers expected an isEmpty or isAbsent
method, when instead they end up using the isPresent method,
which returns a boolean indicating whether the contained object
is present. The mistaken expectation reveals an interesting incon-
sistency in both APIs; after using the static constructor methods
absent and empty, one might expect an Optional object to sup-
port an isAbsent or isEmpty method. However, the APIs do not;
instead, the semantics are reversed, supporting only an isPresent
method. The addition of an isEmpty method has been discussed for
Guava’s Optional, but was eventually dismissed as not having a
clear enough advantage.1 Our tool provides some empirical data to
help inform the opinions expressed in that discussion.

3.5 Logging
Developers add logging statements to get some visibility into what
is happening inside running programs. When debugging an issue,
developers may log fine-grained information about an executing
program, but debug logging may be too expensive or verbose to use
when running in production. At Google, this problem is addressed
by adding log statements as specific levels including error, warning,
and info. The log level to use is specified at runtime and only those
log statements at or above that level are printed (e.g., programs run
at “warning” level also will display error logs but not info logs).

We discovered that developers often do not knowwhich log level
to use when creating log statements. Figure 2 shows a graph for the
Android logs API, showing transitions between logging methods at
different levels: v for a verbose message, d for a debug message, i
for info, w for a warning, e for an error, and wtf2 for a failure that
should never happen. In this graph, the number of change instances
are labeled on the edges, and no edges are elided.

We note that no non-existent methods are present here, meaning
typos were rare. We also observe that the graph is largely evenly
bidirectional, meaning that for most edges from a to b, there’s an
edge from b to a of approximately equal weight. This suggests that
developers weren’t necessarily confused about what each method
does, but instead were unsure which one was appropriate in a given
context. The only exception is the d(ebug) to e(rror) transition; there
were half as many opposite transitions.

1https://github.com/google/guava/issues/734
2What a Terrible Failure. https://developer.android.com/reference/android/util/Log.
html

https://github.com/google/guava/issues/734
https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/reference/android/util/Log.html

WAPI’18, June 2018, Gothenburg, Swedon Murphy-Hill, Sadowski, Head, Daughtry, Macvean, Jaspan, and Winter

d

e

19

i

12

w

9

v

4

9

13

8

5

wtf

2 12

15

9

3

10

10

3

2

7

3

2

2

Figure 2: Changes in clients using Android’s logging API.

4 LIMITATIONS AND FUTUREWORK
Although our initial work is promising, a variety of improvements
are needed to ready this tool for practical use. Long-term, we en-
vision this tool running constantly over developers’ snapshots,
providing designers feedback on how developers are using, and
struggling to use, their APIs. Although our tool capitalizes on the de-
velopment environment at Google, we predict that in the future, all
software development will be performed in the cloud, enabling this
kind of analysis in a variety of organizations. The recent emergence
of powerful cloud-based IDEs hints at this future. Nonetheless, the
value of improving the usability of APIs must be balanced with
developers’ needs for privacy and ability to experiment freely.

Our existing tools could be enhanced in a variety of ways. One
way is to support more patterns of API change, beyond simple
method changes. Another way is to support more languages than
Java. Using more frequent snapshots (say, automatically snapshot-
ting a developer’s code every second) holds the promise to the-
oretically enhance our ability to identify API usability problems.
However, it also makes analysis more challenging, because more
snapshots would contain syntax errors. Reliably performing pro-
gram analysis in the presence of syntax errors, perhaps leveraging
past snapshots of the same code, could substantially improve Stop-
Motion’s ability to find syntax errors.

A significant area for improvement of our approach is in the
analysis, summarization, and visualization of results. The analysis
of the results done here was largely manual, which we found was
laborious and requiring expertise in the APIs under inspection.

The analysis presented in this paper also focused exclusively
on failures as opposed to entropy. For example, methods that are

used often without failure might help illuminate patterns in the
cases where we do see failure. For example, we saw multiple cases
of issues with differentiation by specificity (add vs. addAll and
copyFrom vs. copyFromUtf8). Does differentiation by specificity
work well in other places, and what makes those designs different?

It also remains difficult to automatically distinguish between
true API usability problems and other kinds of code changes. For
example, we often found that developers would copy and paste a
statement, then replace the statement’s method call with a different
call. This does not necessarily indicate any problem with the API
being used, but instead reflects the frequency of which the API is
used among our population of developers.

Likewise, it remains difficult to suss out the “worst” API usability
problems. We originally analyzed our results by starting with the
more frequent changes first (e.g absent to empty in Optional was
themost frequent change), these turned out to not necessarily be the
biggest API usability problems; instead, they reflected simply the
most common APIs used in the company. We believe that a variety
of heuristics could be used to find the most severe API usability
problems. For instance, the longer a developer takes to converge on
the final, desired API usage, the more time they are wasting, and
arguably the more severe the problem. Another heuristic we think
is promising is looking at developer API experience; changes from
developers who have not used the API before are more likely to
reflect actual API usability problems, compared to developers who
are already familiar with the API.

REFERENCES
[1] Tim Burks. 2017. I got a golden ticket: What I learned about APIs in my first

year at Google. (September 2017). medium.com.
[2] Steven Clarke. 2005. Describing and measuring API usability with the cognitive

dimensions. In Cog. Dimensions of Notations: 10th Ann. Workshop. 131–132.
[3] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.

2013. An empirical study of cryptographic misuse in android applications. In
Proceedings of the Conference on Computer & Communications Security. 73–84.

[4] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. 2001. Graphviz – open source graph drawing tools. In International
Symposium on Graph Drawing. Springer, 483–484.

[5] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. ACM, 313–324.

[6] Cynthia A Graham, Joseph A Catania, Richard Brand, Tu Duong, and Jesse A
Canchola. 2003. Recalling sexual behavior: a methodological analysis of memory
recall bias via interview using the diary as the gold standard. Journal of sex
research 40, 4 (2003), 325–332.

[7] Andrew Macvean, Luke Church, John Daughtry, and Craig Citro. 2016. API
Usability at Scale. In 27th Annual Workshop of the Psychology of Programming
Interest Group-PPIG 2016. 177–187.

[8] Andrew Macvean, Martin Maly, and John Daughtry. 2016. API design reviews
at scale. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. ACM, 849–858.

[9] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through
hoops: why do Java developers struggle with cryptography APIs?. In Proceedings
of the 38th International Conference on Software Engineering. ACM, 935–946.

[10] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E Johnson, and Danny
Dig. 2012. Is it dangerous to use version control histories to study source code
evolution?. In European Conference on Object-Oriented Programming. 79–103.

[11] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. 2013. An empirical study of
API usability. In Empirical Software Engineering and Measurement, 2013 ACM/IEEE
international symposium on. IEEE, 5–14.

[12] Jeffrey Stylos, Benjamin Graf, Daniela K Busse, Carsten Ziegler, Ralf Ehret, and
Jan Karstens. 2008. A case study of API redesign for improved usability. In IEEE
Symposium on Visual Languages and Human-Centric Computing. IEEE, 189–192.

[13] Jeffrey Stylos and Brad A Myers. 2008. The implications of method placement on
API learnability. In Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering. ACM, 105–112.

	Abstract
	1 Introduction
	2 Approach
	3 Study
	3.1 Methodology
	3.2 Collections
	3.3 Protocol Buffers
	3.4 Optional
	3.5 Logging

	4 Limitations and Future Work
	References

