
Bolt-on, Compact, and Rapid Program Slicing for Notebooks

Shreya Shankar†
University of California, Berkeley
shreyashankar@berkeley.edu

StephenMacke†
Unaffiliated

stephen.macke@gmail.com

Sarah Chasins
University of California, Berkeley

schasins@berkeley.edu

Andrew Head
University of Pennsylvania
head@seas.upenn.edu

Aditya Parameswaran
University of California, Berkeley

adityagp@berkeley.edu

ABSTRACT

Computational notebooks are commonly used for iterative work-
flows, such as in exploratory data analysis. This process lends itself
to the accumulation of old code and hidden state, making it hard
for users to reason about the lineage of, e.g., plots depicting in-
sights or trained machine learning models. One way to reason
about code used to generate various notebook data artifacts is to
compute a program slice, but traditional static approaches to slic-
ing can be both inaccurate (failing to contain relevant code for
artifacts) and conservative (containing unnecessary code for an
artifacts). We present nbslicer, a dynamic slicer optimized for the
notebook setting whose instrumentation for resolving dynamic data
dependencies is both bolt-on (and therefore portable) and switchable
(allowing it to be selectively disabled in order to reduce instrumen-
tation overhead). We demonstrate nbslicer’s ability to construct
small and accurate backward slices (i.e., historical cell dependencies)
and forward slices (i.e., cells affected by the "rerun" of an earlier cell),
thereby improving reproducibility in notebooks and enabling faster
reactive re-execution, respectively. Comparing nbslicer with a
static slicer on 374 real notebook sessions, we found that nbslicer
filters out far more superfluous program statements while main-
taining slice correctness, giving slices that are, on average, 66% and
54% smaller for backward and forward slices, respectively.

PVLDBReference Format:

Shreya Shankar, StephenMacke, Sarah Chasins, Andrew Head, Aditya
Parameswaran. Bolt-on, Compact, and Rapid Program Slicing for
Notebooks. PVLDB, 15(13): 4038 - 4047, 2022.
doi:10.14778/3565838.3565855

PVLDBArtifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/shreyashankar/nbsafety-experiments.

1 INTRODUCTION

Computational notebooks, and Project Jupyter [35] in particular,
have revolutionized the workflows of data scientists [46, 47]. Note-
books admit a flexible execution model that segments units of com-
putation into so-called “cells” that can easily be back-referenced for
editing, duplication, or reordering, with intermediate program state

†Equal contribution(order determined by coin flip)
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.
doi:10.14778/3565838.3565855

persisted to memory between subsequent cell executions. This it-
erative cell-based execution modality is ideal for rapid prototyping
and testing of hypotheses, a cornerstone of typical data science
work, and has led to their extensive usage—as of October 2020,
there were nearly 10 million notebooks available on GitHub [23].

Notebooks are Messy. The popularity of notebooks has come
with increased scrutiny; as such, notebooks now have a number
of well-documented disadvantages, related primarily to their ten-
dency to accumulate cruft in the form of both visible notebook code
[29, 33, 50] and invisible in-memory program state [21]. Data sci-
ence workflows, in particular, tend to be exploratory in nature [33].
These flaws can make execution behavior in notebooks difficult to
reason about and cause misleading or incorrect findings, leading
to confusion during ad-hoc exploration, prototyping, and iteration.

Organizing Notebook Iteration with Program Slicing. To ad-
dress notebook shortcomings, recentwork has developed approaches
based on backward program slicing to gather code in messy note-
books [26, 31], thereby making it easier for data scientists to retrace
their steps. Traditionally applied to program debugging [6, 59],
program slicing determines a (typically smaller) subset of program
statements that affect some other program statement(s). In the con-
text of notebooks, backward program slicing captures the lineage
required to reproduce the outputs of one or more cells; e.g., to
“gather” code that was written in an ad-hoc fashion, potentially
out-of-order across multiple notebook cells, into a clean script that
reliably reproduces the data scientist’s analyses. The more compact
this slice is, the smaller the lineage, meaning it is more efficient to
re-execute for reproducibility while preserving accuracy.
Forward program slicing also has applications in data science

workflows in computational notebooks. In the context of notebooks,
a forward program slice determines the set of cells that are affected
by a given cell, and can be used to automatically (or reactively
[13, 38, 42, 56]) re-execute all the cells that could be affected by
some other cell, ensuring that cells do not become stale. A reac-
tivity tool for notebooks can be thought of as performing a form
of materialized view maintenance — specifically, “refreshing" the
notebook after an earlier cell is rerun by re-executing dependent
cells. Such reactivity features help to push the burden of tracking
what cells have become stale away from the user and down into the
notebook kernel. This feature is particularly helpful for data science
workflows, which can involve toggling many values (e.g., hyperpa-
rameters) and re-executing what might be dozens of downstream
data transformation dependencies. Once again, correctness (i.e.,
making sure we are rerunning everything affected) while minimiz-
ing slice size (i.e.,only rerunning what is needed) is key to ensuring
interactivity during exploratory data analysis.

4038

https://doi.org/10.14778/3565838.3565855
https://github.com/shreyashankar/nbsafety-experiments
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565838.3565855
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Notebook-Centric Slicing: Challenges. Backward and forward
slicing can help automate away some of the messiness inherent
in notebook-resident data science workflows and thereby improve
downstream reproducibility. Ideally, slices should be as small as
possible in order to eliminate extraneous computation, while pre-
serving correctness of the underlying program. However, computa-
tion of slices that are simultaneous small and accurate, and without
noticeable degradation of existing notebook behavior and perfor-
mance, is difficult to achieve in practice. We now outline challenges
we faced while developing nbslicer, a state-of-the-art dynamic
slicer optimized specifically for the notebook setting, along with
contributions that addressed each challenge.
Challenge1: Small andaccurateprogramslices. Backward slic-
ing was first explored in the context of code gathering in note-
books by Head et al. [26]. However, it is not difficult to construct
cases wherein the static slicing technique used in [26] will yield
overly-conservative (and therefore larger than necessary) slices.
One approach to reduce slice size while preserving correctness is to
leverage dynamic slicing [37]. In contrast with static slicing, which
infers dependencies between cells solely from their static contents,
dynamic slicing infers such dependencies using the actual runtime
state of the notebook’s execution log.

We now illustrate such dynamic behavior with an example. Con-
sider an abridged verison of a real example session from the replay
dataset described in Section 4.1 wherein nbslicer, which uses dy-
namic slicing, yields a more compact slice than a static slicer. In this
session, a user explores a dataset and fits a least-squares model to it:

In [1]:

import numpy as np
import pandas as pd

housing = pd.read_csv('housing.txt', sep='\s+')

In [2]:
corr = housing.corr()
np.abs(corr.sort(columns=['crime', 'residential']))

In [3]:

def LR_solve(X, y):
""" Solves a linear regression problem."""
if len(X.shape) == 2:
A = np.hstock((np.ones((X.shape[0],1)), X))

else:
A = np.hstack(
(np.ones((X.shape[0],1)), np.expand_dims(X,1)))

rtn = np.linalg.lstsq(A, y)
return rtn[0]

In [4]:
X = housing[:, :(- 1)]
b = housing[:, (- 1)]
LR_solve(X, b)

The user runs into an error because therewas a typo of np.hstock
in cell 3, motivating them to rerun cells 3 and 4 (as cells 5 and 6,
respectively) after fixing. When running nbslicer to reconstruct
the output of the last cell (i.e., cell 6), we see that the dynamic slice
contains only cells 1, 5, and 6. However, a static slicer would include
the entire execution log in its slice, including cells 3 and 4, which
were run before the typo was fixed. We discuss why the additional
cells are included in the static slicer below:
• Cell 2 calls functions from external libraries numpy and pandas.
A dynamic slicer can figure out that the np and pd objects ref-
erence these external libraries and do not modify state; thus
nbslicer is able to exclude these cells.

• Cells 4 and 5 attempt to fit a least squares model to the data.
However, the typo in cell 4 — np.hstock (instead of np.hstack)
— still parses and is included in the static slice. Again, these cells
also include calls to external libraries and are therefore included
in the static slice even though they do not modify state.

Though dynamic slicing can reduce slice size while preserving
correctness, prior approaches require deep modifications to the
underlying interpreter or virtual machine responsible for running
code in the target language [15, 58], presenting problems from both
performance and portability standpoints, which we describe next.
Challenge2:Balancingperformancewithportability.Dynamic
slicing for smaller and more accurate slices is itself not a new idea,
but it comes with the drawback of significant overhead, since it
requires visibility into executing code in order to infer runtime data
dependencies. For example, Python ≥ 3.8 supports tracing of indi-
vidual bytecode operations via builtin system tracing utilities [4] —
functionality upon which runtime data dependency tracking could
be implemented — but we found that leveraging this approach leads
to slowdowns of 100× or more. Such overhead is clearly infeasible
for typical data science workloads, which are interactive in nature.

An alternative approach is to instrument the interpreter itself in
a lower-level language such as C, as in prior work [15]. However,
if a dynamic slicer were to require a custom-compiled Python in-
terpreter, data scientists wishing to use said slicer would need to
re-download a new interpreter every time a new version of Python
is released — a process with considerably more friction than the typ-
ical workflow of grabbing a library from PyPI or Anaconda. From
a maintainer standpoint, supporting multiple versions of Python
is also less than ideal. Overall, implementing a dynamic slicer that
can be installed portably as a simple Python library, while simulta-
neously introducing negligible overhead and retaining interactive
latencies, is entirely nontrivial.
nbslicer: A Hybrid Static-Dynamic Slicer. To make dynamic
slicing work for the notebook setting, wherein interactivity and
portability are key, we developed nbslicer, a novel hybrid static-
dynamic slicing tool optimized for the notebook setting. The key
technical contribution of nbslicer is to instrument data scientists’
code at the level of the abstract syntax tree (AST), rather than at the
level of Python bytecode, allowing for portable and switchable in-
strumentation that can be selectively enabled and disabled in order
to bound the amount of overhead induced by such instrumentation,
all while retaining most of its benefits regarding compactness and
accuracy of slices.
When instrumentation is enabled, nodes in a program’s AST

are transformed in a way that injects additional observability into
the data referenced by the program, but without changing the
program’s behavior. The aforementioned “additional observability”
takes the form of a data dependency resolver that decorates por-
tions of the uninstrumented AST with the data dependencies that
would be difficult to infer purely statically. From here, a static ana-
lyzer operates on this enriched AST and short-circuits whenever it
encounters subtrees that have been marked as having dynamically-
resolved data dependencies. For example, nbslicer will attempt to
dynamically resolve data dependencies involved in Call nodes; e.g.,
in our earlier example, it will resolve the dependencies involved
with the statement
A = np.hstack((np.ones((X.shape[0],1)), X))

as edges from np and X to A, and it will not include an edge from np
to np as it is aware that calls to numpy functions such as hstack

4039

Cell / Statement Read Set Write Set

import numpy as np {} {np1 }
import pandas as pd {} {pd2 }
df = pd.read_csv(...) {pd2 } {df3 }
X, y = df[:, :-1], df[:, -1] {df3 } {X4, y4 }
X = np.expand_dims(X, 1) {X4, np1 } {X5 }
s = (df.shape[0], 1) {df3 } {s6 }
A = np.hstack((np.ones(s), X)) {s6, X5, np1 } {A7 }
rtn = np.linalg.lstsq(A, y) {A7, y4 } {rtn8 }

Figure 1: Example of how statements’ read and write sets induce dependen-
cies between cells, which are then used for slice construction. The “sliced"
cell is highlighted. Orange arrows represent backward slice construction.
Cyan arrows represent forward slice construction.

and ones are non-mutating. If the AST were not enriched with this
dynamically-resolved information, the fallback static slicer might
conclude that the call to np.hstack could modify some internal
state to the np object, and include that statement in slices that
involve subsequent usages of np, even if they do not involve A.
Switchable Instrumentation. The key property of our hybrid
approach to slicing that admits interactive latencies in spite of in-
strumentation is that this instrumentation can be disabled when
performance would suffer (e.g., in tight loops or repeated function
calls) and re-enabled when the additional overhead would no longer
adversely impact the user experience (e.g., at the start of a new basic
block). In order to facilitate this switchable instrumentation, it is vital
to maintain a correspondence between executing instructions and
the program’s AST (which is where the static component of slicing
operates). It is for this reason that our instrumentation operates at
the level of the program’s AST rather than at the level of bytecode,
since an instrumented AST can more easily reference its uninstru-
mented counterpart (as such back-pointers can be insertedwhen the
original, uninstrumented AST is transformed). In contrast, bytecode
instrumentation operates over streams of Python opcodes, which
lack metadata that would allow for constructing a correspondence
with the program AST. Although it is possible to get some informa-
tion such as the current line in the program text, it is not easily pos-
sible to deduce, e.g., to which attribute reference a LOAD_ATTR in-
struction corresponds to in a given line, should multiple be present.
Outline. The rest of this paper is organized as follows. Section 2
gives relevant background context on program slicing along with
our formal problem definition. Section 3 presents our hybrid static-
dynamic dependency resolution techniques for portable and low-
overhead program slicing in computational notebooks, which we
evaluate in terms of speed, slice size, and correctness in Section 4.
We compare and contrast nbslicer with related work in Section 5
before concluding in Section 6.

2 PROBLEM

In this section, we define requisite terminology and introduce the
backward and forward slicing problems in the context of compu-
tational notebooks. Figure 1 will serve as a running example on
which we anchor the discussion.

2.1 Preliminaries

We begin by defining forward and backward slices, and show how
they are constructed from data dependencies.
Definition 1 [Forward and Backward Slices]. A backward slice for
a cell c consists of the transitive closure over cells that may affect any of

the variables read by c . A forward slice for c consists of the transitive
closure over cells that reference variables that are affected by c .

In Figure 1, the sliced cell, c4, is highlighted. The backward slice is
constructed by transitively following the arrows pointing from c4
(colored in orange), and the forward slice is constructed by tran-
sitively following the arrows pointing to c4 (colored in blue).
A cell c affects a variable v whenever there exists a data depen-

dency from variables that are read by c to v:
Definition 2 [Data Dependency].A variable y is data-dependent
on another variable x if the same program statement both reads from

x and writes to y.

In Figure 1, for the highlighted cell c4, there is a data dependency
from df3 to each of X4 and y4, and in general every single-statement
cell has data dependencies from each variable in its read set to each
variable in its write set.
Cell-Level Slicing. For traditional program slicing, one has to con-
sider both data dependencies and control dependencies to determine
which statements actually get executed; however, in nbslicer, we
only consider data dependencies. This particularity stems from the
design decision to construct slices at cell-granularity, since cells
already logically separate the notebook and admit a natural gran-
ularity to use for backward or forward slices. By designing our
slicer to include or exclude blocks of code at cell-level granularity,
we circumvent the issue of control dependencies altogether with-
out sacrificing soundness / correctness, since control dependencies
never exist between statements in separate cells. If finer granu-
larity is desired, note that we can simply treat each module-level,
or outermost program statement as being in its own “virtual” cell
— affording slices with relatively high resolution despite the lack
of control dependencies, since cells in a notebook are themselves
typically dominated by basic block code.

This decision simplified the design of our slicer, in that it does not
need to consider control dependencies during slice construction; i.e.,
nbslicer does not need to consider whether individual statements
in, e.g., the body of a loop or if statement need to be included —
they are rather included or excluded in an all-or-nothing fashion
along with the cell.
Timestamps. To disambiguate between different versions of the
same variable appearing in some data dependency, each variable
is associated with a timestamp corresponding to the cell that most
recently modified it:
Definition 3 [Timestamp]. A cell has timestamp k if it is the kth cell
to execute; i.e., its execution counter is k . A variable v has timestamp

k if the most recent cell with a statement to write to v has timestamp k .

By our definition of timestamp, there is exactly one cell with times-
tamp k , which we denote by ck . If ck writes variable v, we similarly
use vk to denote its resultant value, when the extra disambiguation
is needed (as for the read / write sets of Figure 1).

2.2 Problem Statements

In this work, we focus on two applications of slices in the notebook
context: backward and forward. Suppose we have a notebook ses-
sion S whose execution log is composed of cells {c1,c2,c3,...,cn },
and we are interested in computing slice T .

Problem 1 (Backward Slicing). For any ck ∈S , construct a minimal

(in terms of the number of cells) sliceT ⊆S such thatT includes every

cell upon which ck (transitively) depends.

In a notebook setting, backward slicing can be used to gather
messy code into a coherent script, to aid in later reproducibility.

4040

Forward slicing, in contrast, can be used to enable reactive semantics,
wherein dependent cells are automatically re-executed when up-
stream statements are rerun (also aiding reproducibility, by keeping
the notebook state consistent with the program text):

Problem 2 (Forward Slicing). For any ck ∈S , construct a minimal

(in terms of the number of cells) sliceT ⊆S such thatT includes every

cell that (transitively) depends on ck .

In order to solve these problems, nbslicer keeps the metadata
presented in Figure 1materialized inmemory and updates it as users
execute statements in the notebook. When users want to construct
a slice with a given cell c , we perform a “lineage query” in the appro-
priate direction, either forward or backward, to compute the cells
reachable from c (or cells from which c is reachable, respectively).
The success of a slicing algorithm depends on the ability to

rapidly and precisely identify data dependencies. Despite prior
work for program slicing in Python [15, 26], there are no approaches
for doing so dynamically in a notebook context, wherein portabil-
ity and interactivity are vital. In Section 3, we contribute such an
approach for dynamically identifying data dependencies. Our ap-
proach leverages instrumentation that is both bolt-on (not requiring
a reimplementation of the Python interpreter) as well as switchable
(allowing it to be low-overhead).

Soundness and Completeness Assumptions of nbslicer. In
the context of program slicing, a slicer is sound if it never incor-
rectly excludes code that should be in the slice, and it is complete if
it correctly excludes all the code that should not appear in the slice
[25]. Our goal in designing nbslicer is to improve completeness
over static implementations, while maintaining soundness in most

cases and keeping overhead low.
To maintain soundness, nbslicer requires that any used libraries

external to the notebook be annotated to describe their side effects.
We provide a DSL described in Section 3.3 for these purposes. Addi-
tionally, nbslicer does allow trading soundness for completeness
in some cases (also described in Section 3.3) as a configuration op-
tion. Finally, nbslicer makes no guarantees regarding soundness
when interacting with state external to the notebook, such as files
that could be mutated by external processes. We found that, despite
these limitations, nbslicer is still capable of producing useful slices
that reproduce desired outputs (see Section 4). Further addressing
these limitations provides a useful direction for future work.

3 HYBRID SLICING

In this section, we present the key components underlying nb-
slicer; namely, its traditional AST-level static data dependency
resolver, as well as its dynamic data dependency resolver, and how
these two components work together in the context of nbslicer’s
data model to implement a dynamic slicer with static fallback. We
show how the dependency resolver, which uses AST-level instru-
mentation, facilitates portable and switchable instrumentation that
can be disabled in order to keep overhead bounded, thereby allow-
ing data scientists to use nbslicer without adjusting their interac-
tive workflows.

3.1 Static Data Dependency Resolution

Before discussing how nbslicer statically captures data dependen-
cies, we begin by introducing its model used to represent such
dependencies.

DataModel. nbslicer uses nbsafety’s [41] abstraction of a “sym-
bol” to capture the basic unit of data capable of participating in a
data dependency. In this model, symbols are used to capture data at
the resolution of unqualified variable names (e.g., lst), as well as
data nested as subscripts or attributes (e.g., lst[42] or foo.bar,
respectively). We will use the following code snippet to illustrate:

In []:

lst = [1, 2, 3, 4, 5] # line 1
lst[3] = 42 # line 2
y = lst[2] + 7 # line 3
lst = [6, 7, 8, 9, 10] # line 4
y = lst[2] + 7 # line 5

Each symbol is associated with up to two namespaces, for repre-
senting data nested as either attributes or subscripts. For example,
the symbol lst is associated with a namespace containing nested
symbols for lst[2] and lst[3]. Symbols nested inside of another
symbol’s namespace are implicitly data-dependent on that symbol.
For example, lst[2] is dependent on lst.
Slicing with Field-Granular Data Dependencies. In the above
example, line 3 has data dependency from the symbol lst[2] to
y. These record- or field-granular dependencies allow nbslicer to
compute the backward slice for line 3 as just the first and third
lines. Field-granular data dependencies allow nbslicer to capture
the property that a write to lst[3] will not affect something that
depends on lst[2], thereby allowing it to compute smaller slices.
Note that the implicit data dependencies of nested symbols on

their parents ensures correctness of slices that involve both nested
and non-nested data. For example, the backward slice for line 5
contains lines 4 and 5, since y depends on lst[2] and lst[2]
depends on lst.
Static Resolution. For simple cases, data dependencies can be in-
ferred solely via statically analyzing code. Consider, for example, the
snippet x = lst[42]. In this case, nbslicer’s static dependency
resolver will operate on an AST Assign node, whose target consists
of a Name in a store context, x, and whose right hand side consists of
a subscripted Name node in a load context, lst[42]. For such a case,
nbslicer will draw a data dependency between x and lst[42].

However, static analysis can get us only so far in the case of addi-
tional dynamic behavior. Suppose the snippet instead uses a variable
for the list index: x = lst[y]. Here it is still possible to draw the
data dependency just by statically inspecting the code, if we have
the additional knowledge that y is equal to 42 at runtime. However,
for the case x = lst[f()], wherein f is a function that is called and
which eventually returns 42, we quickly reach the limits of what
static code inspection can give us, since in the general case there is
no way to know exactly what f will do without actually running it.

3.2 Dynamic Data Dependency Resolution

From the example in Section 3.1, we see that nbslicermust rely on
additional instrumentation in order to capture data dependencies
from code with dynamic behavior, such as function calls. Providing
additional instrumentation without modifying the interpreter (in
order to satisfy our portability requirement) is challenging, however.
As mentioned in Section 1, one approach built into Python ≥ 3.8
is to attach a tracing handler that runs for each opcode event; i.e.,
for every single bytecode instruction, but this approach introduces
unacceptable and unavoidable overhead (please see the technical
report [53] for more details). In fact, any kind of instrumentation
introduces significant overhead.

4041

Subscript

Call

resolve Call

f

Call

resolve Call

g

resolve(f())[resolve(g())]

→ lst 5←

Subscript

Call

f

Call

g

f()[g()]

Figure 2:AST transformation and symbol resolution example
Embedded Instrumentation via AST Transformations. The
solution we take for nbslicer is to embed tracing instrumentation
directly into notebook programs’ source code. Suppose we have two
functions, f and g, which return a list lst and the constant 5, respec-
tively. At a high level, code such as x = f()[g()] is rewritten as

x = resolve(f())[resolve(g())]

where the resolve(...) calls handle non-statically-resolvable
subtrees of the abstract syntax tree and decorate their roots with
symbol information. This symbol information then allows the static
dependency resolver to function as a de-facto dynamic dependency
resolver by short-circuiting when it reaches these non-statically-
resolvable subtrees and drawing edges for the dynamically-resolved
symbols. This process is depicted in Figure 2. To massage the
ASTs into their instrumented forms, our implementation leverages
Pyccolo [2], a framework providing lightweight and declarative
wrappers around Python’s built-in AST transformation utilities [3].

3.3 Switchable Instrumentation

While instrumentation is enabled, overhead is high. The key ad-
vantage of AST-level instrumentation is that it can be temporarily
disabled without requiring changes to the behavior of the data de-
pendency resolver, in order to avoid paying the additional overhead
from instrumentation. When enabled for some portion of the pro-
gram, the corresponding AST is decorated with inferred dynamic
dependencies; when disabled, this decoration is absent, and the
resolver falls back to conservative static behavior.
When should we disable instrumentation in order to bring per-

formance to a level on par with uninstrumented notebook code, and
without affecting the quality of program slices? We developed two
heuristics for this decision that work well in practice. These heuris-
tics disable instrumentation (i) for program statements that have
run before (e.g., due to their appearance in a loop body or a func-
tion that is called repeatedly), and (ii) for calls to external libraries,
whose code is defined outside the notebook context. Thanks to these
heuristics, the additional overhead from instrumentation is bounded
by an amount proportional to the size of the notebook program
text. We now discuss these heuristics in more detail, with particular
attention to how they interact with data dependency resolution.

Trace-Once Semantics. To reduce instrumentation overhead, nb-
slicer only runs a statement with instrumentation the first time the
statement in which it is nested runs. This is realized by rewriting,
e.g., for loops according to the below example:

In []:

first_loop_iteration = True
for ... in ...:
if first_loop_iteration:
... # instrumented loop body

else:
... # uninstrumented loop body

first_loop_iteration = False

If the loop body contains conditionals with multiple branches, any
branches not initially taken will have corresponding AST subtrees
that lack dynamically-resolved dependencies; for such cases, the
dependency resolution will fall back to static behavior.
What about for statements that did run during the first itera-

tion (and whose AST subtrees therefore have resolved dynamic
dependencies attached)? The attached dependency information,
while accurate for the first loop iteration, may be incomplete. Two
choices for handling this incompleteness are to (i) leverage both
the incomplete resolved dynamic dependencies in conjunction with
static dependencies, or (ii) to just use the incomplete dynamic de-
pendencies in the hope that they are “good enough”.
During experimentation on a real corpus of notebook sessions,

we found that, empirically, it always sufficed to take option (ii) in
practice. For example, consider the below code snippet:

In []:
for i in range(len(10)):
lst[i] += x[i]()

print(", ".join(lst[i] for i in range(10)))

In the above example, the loop body will only resolve dynamic de-
pendencies for x[0](), and not for other entries of x. This strategy
will fail to produce correct slices whenever sliced code references
subscripts of x other than x[0] without also referencing x[0];
e.g., print(x[1]). We never observed such cases in our experi-
ments (Section 4), for which nbslicer always yielded slices that
produced output identical to that of the entire notebook session.
That said, data scientists who do not wish to trade slice soundness
for completeness in this way can configure nbslicer to take op-
tion (i) instead and leverage both static and dynamic dependency
resolution for statements that execute multiple times, if desired.
Rule-Based Dependency Inference for Libraries. To reduce
overhead, nbslicer switches tracing off for code external to the
notebook (so that API calls to libraries such as, e.g., numpy or
Pandas are uninstrumented). However, such calls can still introduce
data dependencies. nbslicer uses a simple rule-based algorithm to
cope with this reality. We give one example below. Suppose we are
running code involving a dataframe df with column A:

In []:
df.A.dropna(inplace=inplace)
print(df.A.avg())

Depending on the value of inplace, the call to dropna(...)
will either return a value, or None. The default behavior of nb-
slicer is to assume that external library calls that return a value
do not introduce data dependencies, while calls that return None
will introduce edges from the old object value (i.e. previous value
of df.A in this case) and any arguments to the new object value.
In this way, when inplace is False above, the backward slice for
the last statement is just the last statement, but when it is True, the
backward slice for the last statement includes the previous call the
dropna(...), which is the correct behavior. Note that without a
dynamic dependency resolver capable of checking return values of
functions, we would not know which case holds.
DSL for Exceptions to the Rule-Based Resolver. Although our
rule-based heuristics are accurate for most calls to external libraries,
they do not capture all cases perfectly. To handle exceptions, nb-
slicer provides a declarative DSL based on Python annotations
for specifying how functions and class methods from modules out-
side the notebook mutate the caller or other arguments and when
they do not. When nbslicer encounters a call to such a function

4042

builtins.pyi
class list:
def append(self, e) -> ListAppend[self, e]: ...
def extend(self, es) -> ListExtend[self, es]: ...
def insert(self, i, e) -> ListInsert[self, i, e]: ...
def remove(self, e) -> ListRemove[self, e]: ...
def pop(self, i) -> ListPop[self, i]: ...
...
io.pyi
class IOBase:
def read(self) -> Mutate[self]: ...
def write(self) -> Mutate[self]: ...
...
matplotlib.pyplot.pyi
def plot() -> NoEffect: ...

Figure 3: Example usage of DSL for extra-notebook dataflow
or method, it first tries to match the arguments specified in the
signature to symbol metadata originating from the notebook, and
it takes an action corresponding to the return annotation.
For example, according to the usage of the DSL in Figure 3, nb-

slicer will not attempt to match arguments given to the plot
function from the matplotlib.pyplot module against notebook
symbols, since no arguments are specified in the DSL declaration.
According to the return annotation, calls to plot should have no ef-
fect. The effect of the DSL declaration is thus to override the default
rule-based behavior, since calls to plt.plot return None. As an-
other example, for calls to read on file handles, nbslicer will bind
the notebook symbol for the file handle to the DSL variable self,
and it will mark this symbol as being mutated by the method call,
even though such calls to not return None. Finally, certain methods
or functions may result in side effects that are too complicated to be
specified declaratively — for these, we allow custom handlers to be
registered. For example, calls to list.insert will leave symbols
before the insertion point unchanged, but will shuffle symbols after
the insertion point forward in the list’s subscript namespace. This
logic is encoded in the ListInsert handler, to which nbslicer
passes the symbol metadata for the self, i, and e arguments.

4 EMPIRICAL STUDY

We evaluated nbslicer’s effectiveness in two dimensions: slice size
and computational overhead. We ran two sets of experiments: one
to evaluate slice size by comparing nbslicer to nbgather [26], a
static slicer for computational notebooks in Python, and another to
evaluate nbslicer’s computational overhead compared to a regular
IPython kernel with no extensions. Our experiments are based
off the version of the static slicer used in nbgather at the time of
the CHI 2019 paper [26]. For all experiments, we programmatically
executed code cells in a Python script instead of manually executing
them in the Jupyter interface to eliminate human-created delays
between running cells.

4.1 Notebook Data

For each evaluation aspect —slice size and computational overhead—
we collected a dataset of notebooks. The first dataset consists of
notebook sessions, or ordered lists of code cells run by a user while
their IPython kernels were active. We found that most of these
notebooks executed in under a tenth of a second, motivating us to
collect a second dataset of more computationally-intensive note-
books to measure nbslicer’s runtime overhead on.
Session Replay Data. We obtained notebook sessions from the
repository collected in the nbsafety paper [41]. This repository

0.0 0.2 0.4 0.6 0.8 1.0
Slice size ratio |T |/|S |

0

20

40

60

80

Co
un

t

nbgather

nbslicer

Figure 4:Histogram of slice size ratios for the session replay dataset.
consists of sessions corresponding to IPython notebooks scraped
from public GitHub repositories using Github’s public search API.
Macke et al. implemented a cleaning process to ensure the note-
books did not contain malicicious code or calls to external services
(e.g., AWS, Spark, Postgres, MySQL), removing about 1

6 of the note-
books [41]. The notebook sessions included in our experiments did
not require filesystem use (e.g., reads or writes to external files).
Each notebook session in the dataset had at least 50 cell executions.
A session begins when the notebook kernel starts, and ends

when the kernel shuts down. Session data was extracted from
history.sqlite files produced by IPython and includes infor-
mation about individual cell executions, including the source code
and execution counter for every cell execution. We filtered the
repository to include only 374 sessions we could deterministically
run without errors. Filtering scripts are available on GitHub [40].
More details are available in our extended technical report [53].
Dive into Deep Learning Data. Many of the notebooks collected
in Section 4.3 analyze only small amounts of data and have short
runtimes. To conduct the computational overhead analysis, we ob-
tained a set of deep learning tutorial notebooks from the Dive Into
Deep Learning (D2L) initiative that have longer runtimes. These
notebooks do not contain cell replay data; each notebook is only
represented by an .ipynb file, or a .json containing an ordered
list of source code cells visible in the notebook environment.

We downloaded the PyTorch notebooks from the D2L repository
and successfully ran 71 notebooks locally. Our dataset for the com-
putational overhead experiments consists of these 71 notebooks.
Please see the technical report [53] for more details.

4.2 Metrics

We now describe metrics used to evaluate our dynamic slicer.
Slice Size Ratio. For a notebook session S and slice T ⊆S , the slice
size ratio is defined as the number of statements in that slice divided
by the number of statements in the full session, |T |/|S |. Assum-
ing equivalent execution results, smaller slice sizes are preferred
because they require less time to execute and are more readable.
Session Latency and Overhead. The session latency is defined as
the notebook execution time under different methods (i.e., under
the nbsafety kernel with nbslicer enabled versus the notebook
execution time under the regular IPython kernel). Measuring the
session latency allows us to quantify overhead from instrumenta-
tion, which we define as the nbslicer session latency divided by
the IPython session latency.
Slice Runtime. The slice runtime of a slice T , denoted by T , mea-
sures thewall clock execution time of the slice under the CPython in-
terpreter (without instrumentation). Measuring slice runtime allows
us to measure the end-to-end performance benefit of smaller slices.

4043

Table 1: Statistics for nbgather and nbslicer backward and forward slice
size ratios and their slice size ratio differences (given in the “∆” columns) for
the session replaydataset. Backward:Wilcoxon test statistic 317.0 andp-value
2.0×10−39. Forward: Wilcoxon test statistic 282.0 and p-value 8.8×10−24.

Backward Forward
gather slicer ∆ gather slicer ∆

min 0.0053 0.0035 -0.2927 0.0032 0.0032 -0.2386
mean 0.2978 0.1022 0.1956 0.2017 0.0933 0.1084
50% 0.1858 0.0435 0.0704 0.0714 0.0217 0.0000
75% 0.4750 0.0833 0.3333 0.2965 0.0526 0.1333
max 1.0 1.0 0.9756 1.0 1.0 0.9500

4.3 Static vs Dynamic Slicer Results

Both slicers constructed a list of statement dependencies. For each
slice, we concatenate the statements to compute slice size.
Slice Correctness. For each of the 374 notebook sessions, we veri-
fied that nbslicer’s slices correctly reproduced any printed output
of the last statement in the original program. One benefit of our
dynamic slicer is that it will not include statements that result in
runtime errors in a slice, while static slices might include such
statements (for example, if the statement references an undefined
variable). Many statements in .ipynb sessions can have runtime
errors, especially when the notebook author is running a cell for
the first time. Only 103 of the statically-generated slices did not
contain statements with runtime errors, demonstrating the nature
of notebook history sessions to contain cells with broken code.
Slice SizeRatios. Figure 4 shows histograms of the backward slice
size ratios from the 374 notebook sessions. The “backward” section
of Table 1 details statistics gathered for a Wilcoxon signed-rank test
for backward slice size ratios (note that the “∆” column refers to the
difference in slice size ratios for a given pair of slices, after which
the aggregations in the leftmost column are applied). Overall, back-
ward slice size ratios from nbslicer are significantly smaller than
those from nbgather (Wilcoxon test statistic 317.0, p=2.0×10−39).
Slice Performance Benefits. To assess the performance benefits
of using nbslicer, we collected the execution times of slices from
nbslicer and nbgather and computed the runtime improvement

for nbslicer. We denote the set of nbgather slice runtimes as T
and the set of nbslicer slice runtimes as T ′. We found that, on aver-
age, an nbslicer slice executed 1.34× faster than an nbgather slice
(computed as avg(T)/avg(T ′)). As previous work has shown that
it is important to mitigate tail latencies in interactive applications
[39], we report p90(T)/p90(T ′) and p95(T)/p95(T ′) (i.e., p90 and
p95 runtime improvements) of 1.15× and 3.81×, respectively.

4.4 Computational Overhead Results

We ran notebooks from the D2L dataset described in Section 4.1
under the nbsafety and regular IPython kernels. Recall that
nbgather, which is based on static slicing, uses the IPython ker-
nel directly and does not have additional runtime overhead. The
median overhead is approximately 2.59.
Session Latencies and Overhead. Table 2 and Figure 5 indicate
that nbslicer session latency is higher than IPython session la-
tency for shorter sessions, and roughly equivalent for longer ses-
sions (note the log-scaled axes). Most of our slowdowns probably
will not disrupt a user’s experience in an interactive notebook set-
ting. For example, the worst case overhead for sessions at most 1
second longwas 5.55—with each session containing at least 50 cells,
the additional latency per cell was at most 1/50∗5.55=0.111s, or
111ms on average, and 100ms is a common heuristic for how much

Table 2: Statistics for session latencies (in seconds) under different methods
and the overhead for the D2L dataset. The rightmost three columns show
overheads for sessions that lasted at least 1s, 5s, and 10s, respectively.

IPython nbslicer Overhead (≥ 1s) (≥ 5s) (≥ 10s)
mean 46.44 47.82 2.39 2.07 1.13 1.06
50% 0.39 1.19 2.56 1.45 1.04 1.02
75% 5.60 7.76 3.05 2.92 1.13 1.11
max 1012 993.0 5.55 5.55 2.07 1.44

100 101 102 103
nbslicer session latency

10−1

100

101

102

103

I
P
y
t
h
o
n
se
ss
io
n
la
te
nc
y

Figure 5:Regular IPython vsnbslicer session latencies for theD2L dataset.
Overhead is most noticeable for shorter sessions, after which the latencies
are roughly equivalent. Note that the axes are log-scaled.
time a UI has to respond for its response to have imperceivable lag
[44]. Based on the assumption that end-to-end program execution
time is not as important as the ease of experimentation offered by
notebook tools, we believe such overhead is acceptable to users.
Additionally, although our experimental scripts programmatically
executed the code cells in a notebook session, in practice, users
manually run cells through an interface, with some time passing
in between cell runs. This “think time" [54] would increase the end
to end notebook session runtime but not necessarily the nbslicer
overhead, contributing to a smaller effective overhead in practice.

4.5 Extension: Notebook Reactivity

Reactive notebooks have increased in popularity for data explo-
ration because of their ability to stay up-to-date, like a spreadsheet,
at all times [13, 20]. We can use forward slicing to support reactiv-
ity: if a user reruns cell c , what cells have statements depending
on any of the top-level statements appearing in c and thus need
to be run again? Here, we show empirically that a dynamic slicer
requires fewer statements of code to rerun.
Methodology. Given data dependencies, nbslicer computes the
forward slice as described in Section 2.2. For our static slicing base-
line, we use nbgather’s static slicer to get backwards edges in the
dependency graph, then reverse directions of the edges. For each
notebook in the session replay dataset, we pick a random cell to re-
run, compute static and dynamic forward slices, and compare sizes.
Results. Figure 6 shows a histogram of forward slice size ratios
for nbslicer and the static slicer used in nbgather. We observe
that nbslicer produces smaller slice sizes, with a median slice
size ratio of 0.02 for nbslicer and a median slice size ratio of 0.07
for nbgather (Wilcoxon test statistic 282.0, p-value 8.8×10−24).
Detailed results are shown in the “forward” section of Table 1.

5 RELATEDWORK

Messy Notebooks. Computational notebooks, being widely used
for exploratory programming and data analysis, lend themselves to
"messy" programming [26]. Users employ all sorts of poor coding
practices while using notebooks, such as storing old versions of

4044

0.0 0.2 0.4 0.6 0.8 1.0
Slice size ratio |T |/|S |

0

50

100

150

Co
un

t

nbgather

nbslicer

Figure 6:Histogram of forward slice size ratios.
code as comments [62] and frequently reordering code cells [34].
Messes accumulate as users iterate on their notebooks, forcing them
to refactor their notebooks by deleting and consolidating cells prior
to sharing their work with others [51]. This process can be tedious
and yield nonreproducible results [49].
Users of notebooks complain that these environments lack ade-

quate support for storing and retrieving historical versions of code
[19, 50]. Studies show that data scientists often rely on informal
versioning techniques such as copy-pasting code or commenting
out code, and these techniques are useful because they support fast
retrieval of old versions [30]. Many approaches to provide informa-
tion about code history are challenging to extend due to the complex
nature of dependencies between code, data, and analysis intents
in notebooks [32]. Prior works consider automatically versioning
code cells and distinct abstract syntax tree (AST) representations at
execution time [32, 49]. nbgather attempts to clean up versions by
performing static analysis on code cells [26]. However, static analy-
sis does not leverage information that could be collected at runtime,
such as fine-grained data provenance, motivating nbslicer.
DataManagement for Notebooks. Previous work has proposed
treating notebooks as dataflow computation graphs [1, 36, 64]. Such
work requires restricts flexibility because users are forced to ex-
plicitly annotate cells with their ordering or succumb to a forced
temporal ordering of cells. nbsafety extends these dataflow-based
approaches preserves existing notebook semantics (e.g., execution
in any order) to keep track of staleness for all symbols in a notebook
[41]. nbsafety leverages data lineage information to identify stale
cells and alert users with potential staleness errors.

The database community has a rich history of work in data ver-
sioning and provenance. Coarse-grained provenance is typically
explored in data management for workflow systems [8, 14, 18]. For
example, Burrito tracks file provenance [22] and noWorkflow an-
alyzes provenance of scripts [43]. While these solutions analyze
worklows post-hoc, nbsafety and Vizier leverage lineage to track
information "online," or at runtime. Computing provenance in an
online fashion is beneficial in notebook environments, where users
frequently iterate on their code and data. nbslicer then leverages
this provenance information for smaller and more accurate slices.
Time Bounded Instrumentation. A unique aspect of our dy-
namic slicer when compared with prior dynamic slicing work is
that we are particularly concerned with minimizing overhead, as
such overhead is exposed to end users since the instrumentation is
active during interactive notebook sessions. Prior work introducing
instrumentation for performance profiling [7, 24] has encountered
similar issues — inserted instrumentation code can add significant
overhead, so running it during every iteration of, e.g., an inner-
most for loop can severely slow down the executing process and
furthermore over-represent such loops in the profiles [60].

To cope with such challenges, profilers have traditionally re-
lied on sampling execution stacks in order to trade off accuracy
and efficiency [9, 10, 27, 60]. Such techniques are unfortunately
not suitable for slicing. Using terminology from Hirzel et al. [27],
sampling-based profilers examine bursts; i.e., (non-contiguous) sub-
sequences of the program’s entire execution trace. Such bursts can
omit program statements that are executed only once, but that intro-
duce dependencies that bridge different parts of the slice. nbslicer’s
optimizations, on the other hand, ensure that every module-level
programming statement has at least some coverage by ensuring
that, e.g., the first iteration of each for loop is instrumented.
Program Slicing. Program slicing techniques have been exten-
sively studied in the programming languages (PL) community to as-
sist with debugging, understanding, and maintaining code [55]. Sev-
eral studies have shown than conservative static slices are imprecise,
and dynamic slices tend to be smaller than static slices [12, 45, 57].
Many existing approaches to dynamic slicing operate at the com-
piler, bytecode, or VM level [5, 17, 63], whichmay require a different
environment setup. However, Sen et al. argue that "portable" slicing
and applicability across different versions of a programming lan-
guage are desirable for popular programming languages [52]. It is
impractical to expect data scientists to compile a specific version of
Python instrumented with slicing, link this version to their system
path, and configure their development environment appropriately,
motivating a “bolt-on" dynamic slicing tool for Python.
ProgramSlicingforPython.Many popular Python tools leverage
static analysis, such as Pylint and flake8. However, dynamic fea-
tures are widely used in Python [28], and static analysis techniques
can fail to produce tight, or short, slices. This can pose problems
when users rerun slices that contain code that they did not intend
to rerun [11]. Much of the existing work in static and dynamic
slicing for Python programs focuses on scripts, not computational
notebooks [16, 48, 61]. noWorkflow leverages dynamic program
slicing to capture fine-grained provenance in Python scripts but
is unable to track dependencies on complex data structures such
as lists, collections, or objects [48], which are frequently used in
computational notebooks and supported by nbslicer. We were
unable to find any open-source dynamic slicer for Python.

6 CONCLUSION

We introduced nbslicer, a portable and performant dynamic slicer
for computational notebooks. We described its implementation via
bolt-on AST instrumentations and discussed how it achieves in-
teractive performance with its hybrid static-dynamic dependency
resolver. Finally, for both backward and forward slicing problems,
we demonstrated nbslicer’s low runtime overhead as well as its
ability to produce smaller slices than a static slicer in a corpus of
real notebook sessions. Though our focus in this paper was slic-
ing, our notebook-centric dynamic dataflow analysis techniques
could be applied more generally. For example, future work could
leverage our techniques to better understand how privacy-sensitive
data propagates through data science notebooks and thereby aid
in GDPR compliance.

ACKNOWLEDGMENTS

We acknowledge support from grants IIS-2129008, IIS-1940759, and
IIS-1940757 awarded by the National Science Foundation, funds
from the Alfred P. Sloan Foundation, as well as EPIC lab sponsors:
Adobe, Microsoft, Google, and Sigma Computing.

4045

BIBLIOGRAPHY

[1] 2018 (accessed December 1, 2020). Datalore. https://datalore.jetbrains.com/.
[2] 2021. Pyccolo: Declarative Instrumentation for Python. https:

//github.com/smacke/pyccolo.
[3] 2022. AST NodeTransformer. https://docs.python.org/3/library/ast.html#ast.

NodeTransformer.
[4] 2022. sys: System-specific parameters and functions. https://docs.python.org/

3/library/sys.html#sys.settrace. Date accessed: 2022-02-28.
[5] Gagan Agrawal and Liang Guo. 2001. Evaluating Explicitly Context-Sensitive

Program Slicing. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering (Snowbird, Utah, USA)
(PASTE ’01). Association for Computing Machinery, New York, NY, USA, 6–12.
https://doi.org/10.1145/379605.379630

[6] Hiralal Agrawal, Richard A DeMillo, and Eugene H Spafford. 1993. Debugging
with dynamic slicing and backtracking. Software: Practice and Experience 23, 6
(1993), 589–616.

[7] Glenn Ammons, Thomas Ball, and James R Larus. 1997. Exploiting hardware
performance counters with flow and context sensitive profiling. ACM Sigplan

Notices 32, 5 (1997), 85–96.
[8] Manish Kumar Anand, Shawn Bowers, Timothy Mcphillips, and Bertram

Ludäscher. 2009. Exploring scientific workflow provenance using hybrid
queries over nested data and lineage graphs. In Scientific and Statistical Database
Management. Springer, 237–254.

[9] Jennifer M Anderson, Lance M Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R
Henzinger, Shun-Tak A Leung, Richard L Sites, Mark T Vandevoorde, Carl A
Waldspurger, andWilliam EWeihl. 1997. Continuous profiling:Where have all the
cycles gone? ACMTransactions on Computer Systems (TOCS) 15, 4 (1997), 357–390.

[10] Matthew Arnold and Barbara G Ryder. 2001. A framework for reducing the cost
of instrumented code. In Proceedings of the ACM SIGPLAN 2001 conference on

Programming language design and implementation. 168–179.
[11] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2015. ORBS and the limits of static slicing. In 2015 IEEE 15th International

Working Conference on Source Code Analysis and Manipulation (SCAM). 1–10.
https://doi.org/10.1109/SCAM.2015.7335396

[12] David W Binkley and Mark Harman. 2004. A survey of empirical results on
program slicing. Adv. Comput. 62, 105178 (2004), 105–178.

[13] Mike Bostock. 2020 (accessed March 1, 2020). Observable: The magic notebook

for exploring data. https://observablehq.com/.
[14] Shawn Bowers. 2012. Scientific workflow, provenance, and data modeling

challenges and approaches. Journal on Data Semantics 1, 1 (2012), 19–30.
[15] Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu,William C Chu, and Baowen

Xu. 2014. Dynamic slicing of Python programs. In 2014 IEEE 38th Annual Computer

Software and Applications Conference. IEEE, 219–228.
[16] Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu, William C. Chu, and Baowen

Xu. 2014. Dynamic Slicing of Python Programs. In Proceedings of the 2014 IEEE

38th Annual Computer Software and Applications Conference (COMPSAC ’14). IEEE
Computer Society, USA, 219–228. https://doi.org/10.1109/COMPSAC.2014.30

[17] Jim Chow, Dominic Lucchetti, Tal Garfinkel, Geoffrey Lefebvre, Ryan Gardner,
Joshua Mason, Sam Small, and Peter M. Chen. 2010. Multi-Stage Replay
with Crosscut. In Proceedings of the 6th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (Pittsburgh, Pennsylvania, USA)
(VEE ’10). Association for Computing Machinery, New York, NY, USA, 13–24.
https://doi.org/10.1145/1735997.1736002

[18] Susan B Davidson and Juliana Freire. 2008. Provenance and scientific workflows:
challenges andopportunities. InProceedings of the 2008ACMSIGMODinternational

conference on Management of data. ACM, 1345–1350.
[19] Robert DeLine and Danyel Fisher. 2015. Supporting exploratory

data analysis with live programming. In 2015 IEEE Symposium on Vi-

sual Languages and Human-Centric Computing (VL/HCC). 111–119.
https://doi.org/10.1109/VLHCC.2015.7357205

[20] Robert DeLine, Danyel Fisher, Badrish Chandramouli, Jonathan Goldstein,
Mike Barnett, James F. Terwilliger, and John Robert Wernsing. 2015. Tempe:
Live scripting for live data. 2015 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC) (2015), 137–141.
[21] Joel Grus. 2018 (accessed June 26, 2020). I Don’t Like Notebooks (JupyterCon 2018

Talk). https://t.ly/Wt3S.
[22] Philip J Guo andMargo I Seltzer. 2012. Burrito: Wrapping your lab notebook in

computational infrastructure. (2012).
[23] Alena Guzharina. 2020. We Downloaded 10,000,000 Jupyter Notebooks From

Github – This Is WhatWe Learned. https://blog.jetbrains.com/datalore/2020/12/
17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-
we-learned. Date accessed: 2022-02-28.

[24] Robert J Hall and Aaron J Goldberg. 1993. Call Path Profiling of Monotonic
Program Resources in {UNIX}. In USENIX Summer 1993 Technical Conference

(USENIX Summer 1993 Technical Conference).
[25] Mark Harman. [n.d.]. Carving up bugs. http://www0.cs.ucl.ac.uk/staff/M.

Harman/exe2.html. Date accessed: 2022-07-14.
[26] AndrewHead, Fred Hohman, Titus Barik, StevenMDrucker, and Robert DeLine.

2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[27] Martin Hirzel and Trishul Chilimbi. 2001. Bursty tracing: A framework for
low-overhead temporal profiling. In 4th ACMworkshop on feedback-directed and

dynamic optimization (FDDO-4). 117–126.
[28] Alex Holkner and James Harland. 2009. Evaluating the Dynamic Behaviour of

Python Applications. In Proceedings of the Thirty-Second Australasian Conference
on Computer Science - Volume 91 (Wellington, NewZealand) (ACSC ’09). Australian
Computer Society, Inc., AUS, 19–28.

[29] Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. 2012.
Enterprise data analysis and visualization: An interview study. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2917–2926.

[30] Mary Beth Kery, Amber Horvath, and Brad AMyers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3025453–3025626.

[31] Mary Beth Kery and Brad AMyers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE, 25–29.
[32] Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling

Messy History in a Computational Notebook. In 2018 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC). 147–155.
https://doi.org/10.1109/VLHCC.2018.8506576

[33] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI Conference on Human Factors

in Computing Systems. 1–11.
[34] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.

Myers. 2018. The Story in the Notebook: Exploratory Data Science Using a Literate
Programming Tool. Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/3173574.3173748

[35] Thomas Kluyver et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows.. In ELPUB. 87–90.

[36] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking
dependencies of cells. In 9th {USENIX}Workshop on the Theory and Practice of

Provenance (TaPP 2017).
[37] Bogdan Korel and Janusz Laski. 1988. Dynamic program slicing. Information

processing letters 29, 3 (1988), 155–163.
[38] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space of

Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.
In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC) (VL/HCC ’20).
[39] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales

of the Tail: Hardware, OS, and Application-Level Sources of Tail Latency. In
Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SOCC ’14). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/2670979.2670988

[40] Stephen Macke. 2020 (accessed July 29, 2020). NBSafety Experiments.
https://github.com/nbsafety-project/nbsafety-experiments/.

[41] StephenMacke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin, and
Aditya Parameswaran. 2021. Fine-grained lineage for safer notebook interactions.
Proceedings of the VLDB Endowment 14, 6 (2021), 1093–1101.

[42] BarryMcCardel andGlenTakahashi. 2021 (accessed July8, 2022).Hex2.0:Reactivity,
Graphs, and a little bit of Magic. https://hex.tech/blog/hex-two-point-oh.

[43] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and
Juliana Freire. 2014. noWorkflow: capturing and analyzing provenance of scripts.
In International Provenance and AnnotationWorkshop. Springer, 71–83.

[44] Jakob Nielsen. 1994. Usability Engineering. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[45] Akira Nishimatsu, Minoru Jihira, Shinji Kusumoto, and Katsuro Inoue. 1999.
Call-mark slicing: an efficient and economical way of reducing slice. Proceedings of
the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002)

(1999), 422–431.
[46] Jim Ormond. 2018 (accessed June 26, 2020). ACM Recognizes Innovators Who Have

Shaped the Digital Revolution. https://awards.acm.org/binaries/content/assets/
press-releases/2018/may/technical-awards-2017.pdf.

[47] JeffreyM Perkel. 2018. Why Jupyter is data scientists’ computational notebook
of choice. Nature 563, 7732 (2018), 145–147.

[48] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2017. noWorkflow: a tool for collecting, analyzing, and managing provenance
from python scripts. Proceedings of the VLDB Endowment 10, 12 (2017).

[49] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 150 (Nov. 2018), 12 pages.
https://doi.org/10.1145/3274419

[50] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and
explanation in computational notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–12.

[51] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and

Explanation in Computational Notebooks. Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173606

[52] Koushik Sen, SwaroopKalasapur, TasneemBrutch, and SimonGibbs. 2013. Jalangi:
A Selective Record-Replay and Dynamic Analysis Framework for JavaScript. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering

(Saint Petersburg, Russia) (ESEC/FSE 2013). Association for ComputingMachinery,
New York, NY, USA, 488–498. https://doi.org/10.1145/2491411.2491447

4046

https://datalore.jetbrains.com/
https://github.com/smacke/pyccolo
https://github.com/smacke/pyccolo
https://docs.python.org/3/library/ast.html#ast.NodeTransformer
https://docs.python.org/3/library/ast.html#ast.NodeTransformer
https://docs.python.org/3/library/sys.html#sys.settrace
https://docs.python.org/3/library/sys.html#sys.settrace
https://doi.org/10.1145/379605.379630
https://doi.org/10.1109/SCAM.2015.7335396
https://observablehq.com/
https://doi.org/10.1109/COMPSAC.2014.30
https://doi.org/10.1145/1735997.1736002
https://doi.org/10.1109/VLHCC.2015.7357205
https://t.ly/Wt3S
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned
http://www0.cs.ucl.ac.uk/staff/M.Harman/exe2.html
http://www0.cs.ucl.ac.uk/staff/M.Harman/exe2.html
https://doi.org/10.1109/VLHCC.2018.8506576
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/2670979.2670988
https://github.com/nbsafety-project/nbsafety-experiments/
https://hex.tech/blog/hex-two-point-oh
https://awards.acm.org/binaries/content/assets/press-releases/2018/may/technical-awards-2017.pdf
https://awards.acm.org/binaries/content/assets/press-releases/2018/may/technical-awards-2017.pdf
https://doi.org/10.1145/3274419
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/2491411.2491447

[53] S Shankar, S Macke, S Chasins, A Head, and A Parameswaran. 2022. Bolt-on,

Compact, and Rapid Program Slicing for Notebooks. Technical Report. Available
at: https://smacke.net/papers/nbslicer.pdf.

[54] Ben Shneiderman. 1984. Response Time and Display Rate in Human Per-
formance with Computers. ACM Comput. Surv. 16, 3 (sep 1984), 265–285.
https://doi.org/10.1145/2514.2517

[55] FrankTip. 1995. A surveyof programslicing techniques. J. Program. Lang. 3 (1995).
[56] Fons van der Plas. 2020 (accessed July 8, 2022). Pluto.jl: Simple reactive notebooks

for Julia. https://github.com/fonsp/Pluto.jl.
[57] G. Venkatesh. 1995. Experimental results from dynamic slicing of C programs.

ACM Trans. Program. Lang. Syst. 17 (1995), 197–216.
[58] Tao Wang and Abhik Roychoudhury. 2008. Dynamic slicing on Java bytecode

traces. ACM Transactions on Programming Languages and Systems (TOPLAS) 30,
2 (2008), 1–49.

[59] Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM

25, 7 (1982), 446–452.
[60] JohnWhaley. 2000. A portable sampling-based profiler for Java virtual machines.

In Proceedings of the ACM 2000 conference on Java Grande. 78–87.
[61] Zhaogui Xu, Ju Qian, Lin Chen, Zhifei Chen, and Baowen Xu. 2013. Static Slicing

for Python First-Class Objects. 2013 13th International Conference on Quality

Software (2013), 117–124.
[62] YoungSeok Yoon and B. Myers. 2012. An exploratory study of backtracking

strategies used by developers. 2012 5th International Workshop on Co-operative

and Human Aspects of Software Engineering (CHASE) (2012), 138–144.
[63] Xiangyu Zhang and Rajiv Gupta. 2004. Cost effective dynamic program slicing.

ACM SIGPLAN Notices 39, 6 (2004), 94–106.
[64] Kevin Zielnicki. 2017 (accessed July 5, 2020). Nodebook. https:

//multithreaded.stitchfix.com/blog/2017/07/26/nodebook/.

4047

https://smacke.net/papers/nbslicer.pdf
https://doi.org/10.1145/2514.2517
https://github.com/fonsp/Pluto.jl
https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/
https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/

