
Designing Proof Deautomation for Rocq

JESSICA SHI, University of Pennsylvania, USA

CASSIA TORCZON, University of Pennsylvania, USA

HARRISON GOLDSTEIN, University of Maryland, USA and University of Pennsylvania, USA

ANDREW HEAD, University of Pennsylvania, USA

BENJAMIN C. PIERCE, University of Pennsylvania, USA

Proof assistant users rely on automation to reduce the burden of writing and maintaining proofs. By design,

automation hides the details of intermediate proof steps, making proofs shorter and more robust. However, we

observed in a need-finding study that users sometimes do want to examine the details of these intermediate

steps, especially to understand how the proof works or why it has failed. To support such activities, we

describe a proof deautomation procedure that reconstructs the underlying steps of an automated proof. We

discuss the design considerations that shaped our approach to deautomation — in particular, the requirement

that deautomation should remain informative even for failing proofs.

CCS Concepts: • Software and its engineering → Software verification and validation; • Human-
centered computing→ Interactive systems and tools.

Additional Key Words and Phrases: proof assistants, proof automation, proof refactoring

ACM Reference Format:
Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce. 2025. Designing

Proof Deautomation for Rocq. In Proceedings of the 15th PLATEAU Workshop on Programming Languages and
Human-Computer Interaction (PLATEAU ’25). 18 pages.

1 Introduction
Proof assistants are environments that support the interactive construction of machine-checked

proofs. Proof assistants have been used to great effect in domains across computer science and

mathematics; in the programming languages community, for example, researchers sometimes

formally justify theoretical claims by mechanizing their proofs in a proof assistant. Unfortunately,

productive usage of proof assistants requires substantial effort and expertise; indeed, in a survey [8]

of users of the Rocq proof assistant [25], 46 percent of respondents had a doctoral degree.

Automation can greatly reduce the burden of proof assistant usage. However, automation also

makes proving less interactive. In a non-automated proof, users can see the proof state at each

intermediate step. In an automated proof, some (or even all) of these intermediate steps are elided,

so the user is no longer able to see those intermediate states. Indeed, there is a fundamental tension

between making proof steps visible and automating them away.

To reconcile this tension, we describe a proof deautomation procedure that reconstructs the un-

derlying steps of an automated proof. Intuitively, the deautomation of a proof involves unrolling its

automation so that the steps the proof assistant takes are made explicit and individually executable.

Authors’ Contact Information: Jessica Shi, University of Pennsylvania, Philadelphia, PA, USA; Cassia Torczon, University of

Pennsylvania, Philadelphia, PA, USA; Harrison Goldstein, University of Maryland, College Park, PA, USA and University of

Pennsylvania, Philadelphia, PA, USA; Andrew Head, University of Pennsylvania, Philadelphia, PA, USA; Benjamin C. Pierce,

University of Pennsylvania, Philadelphia, PA, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.

PLATEAU ’25, Boston, MA
© 2025 Copyright held by the owner/author(s).

Publication date: March 2025.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

2 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

Such a deautomation procedure enables users to better understand an automated proof, especially

if it is not working as expected, by restoring their ability to interact with the proof.

We study deautomation on a core set of automation features drawn from Rocq’s Ltac language [9].
Concretely, we offer these contributions:

• We characterize users’ needs around understanding automation, based on an interview study

that we conducted with practicing Rocq users (§3).

• After introducing a motivating example of deautomation (§4), we discuss several design

considerations for making deautomation informative and controllable (§5).

• We develop a deautomation algorithm that captures the execution of the original script and

extracts a step-by-step version. We pay particular attention to the nuances of deautomating

failing scripts. We prove (in Rocq) that deautomation preserves semantics up to failures. We

also have a proof-of-concept implementation. Some technical details are provided in (§6).

We close with another example (§7), a survey of related work (§8), and ideas for future work (§9).

2 Background on Rocq
We begin with some background to orient readers unfamiliar with Rocq. To fully digest the paper’s

technical content, we recommend an in-depth introduction such as [17].

Tactics. Rocq proofs are written with tactics, commands that instruct the proof assistant on what

the next step of the proof should be. Consider this proof script:

Lemma andb_true_r (b : bool) : b && true = b.
Proof.
destruct b.
- simpl. reflexivity.
- simpl. reflexivity.

This example has tactics destruct, which does case analysis; simpl, which does simplification; and

reflexivity, which solves trivial equalities. In words, this proof says: We proceed by case analysis

on the boolean b. When b is true, after simplifying the equality, we see that it holds reflexively.

When b is false, after simplifying the equality, we also see that it holds reflexively.

Interaction. We next describe the interaction model between the user and the proof assistant.

In the example above, a user would typically write such a proof by checking the proof state after
each step. For example, if the user evaluated the proof to just after the ., the proof assistant would
display this proof state (up to formatting):

goal 1 is: goal 2 is:
- -
(true && true) = true (false && false) = false

Proof states provide important context about what is happening in the proof: here, the user can see

that doing destruct b generates two goals, one where b is true and one where b is false.

Automation. Rocq also provides support for proof automation, including tacticals, which are

higher-order tactics. For example, since both cases of the proof proceed in exactly the same way,

the proof above can be written more succinctly using the semicolon tactical:

Proof. destruct b; simpl; reflexivity.

Semicolon sequences tactics, where a ; b applies b to every goal generated by a. Other automation

constructs besides tacticals include search-based procedures that discharge certain classes of proof

obligations entirely and language features that enable users to write their own tactics. For this

work, we focus on deautomating tacticals.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

Designing Proof Deautomation for Rocq 3

3 Need-Finding Study
Prior studies have broadly suggested that users desire greater understanding about automated

proofs [3, 23], but have not deeply explored what, concretely, users want to understand, or where,

exactly, are the sources of friction that frustrate such understanding. To gain better insight into

these questions, we conducted a need-finding interview study.

Our study consisted of interviews with 11 participants. We opted for interviews rather than

a survey or observations, anticipating that this would allow us to investigate users’ varying

experiences with automation in depth. We recruited participants from personal outreach, mailings,

and word of mouth. All 11 were experienced Rocq users. Seven were Ph.D. students, two were

undergraduate students, one was an engineer, and one was an academic researcher. The interviews

followed a semi-structured guide focusing on participants’ experiences writing, reading, and

maintaining automation. Participants were asked to share examples from their own developments.

After the interviews, we performed a thematic analysis [4] where one of the authors reviewed

their notes from all interview sessions. Anecdotes and quotations were checked against recordings

of each session. This process led us to the idea of deautomation that we present in this paper.

In the rest of this section, we describe the findings from this study that clarify the value of — and

potential designs for — tools for deautomation.

Desires to Understand Automation. The study participants described a variety of situations where

they wanted to know more about their automation, especially if it was not working as expected.

For example, P7 recounted a time when they needed to fix proofs written by others due to a

version change. Showing us one such proof, written as series of tactics chained by semicolons, P7

said, “Just figuring out where exactly it broke was really hard.” They explained,

“Working with semicolons means if you ever have to look at something you wrote that

already has semicolons in it, you probably have to change it back, just because it’s not helpful

to jump from here [pointing to the start of a sentence with semicolons] to here [pointing to the
end]. There’s a lot going on in here, so I would like to understand what it is.”

When using automation to operate on multiple goals at once, participants wanted to understand

how the behavior of the automation differed on different goals. P5, for example, described how they

sometimes needed to know which goals some tactic was failing to solve. P9, who showed proofs

where they worked with several dozen goals at once, said, “Typically, when I change my tactic, I

have no idea how the goals I solved changed compared to my previously written tactic.”

P8 expressed dissatisfaction with existing support for operating on multiple goals, remarking,

“This is supposed to be an interactive theorem prover.” However, they continued, automation such

as semicolons and the “all:” selector break the interactive process of “run a tactic, see the result,

run another one.” Several other participants similarly commented on difficulties with not being

able to see proof states at intermediate points of automated proofs (P1, P4, P5, P7).

Participants also sought deeper insight when a tactic such as auto surprisingly solved a goal,

indicating that a premise might have been false (P4), and when they needed to use automated

tactics from other libraries (P2).

Approaches to Understanding Automation. Many participants described strategies for temporarily

undoing automation, as well as choices to avoid automation altogether in certain situations.

In order to find and fix failures in automated proofs, participants would sometimes undo parts of

their automation, e.g., by turning semicolons into periods (P3, P4, P5, P7, P9) or inlining the body

of a custom tactic (P1, P7, P8, P9). For example, P9 simulated how they debug their custom tactic

by copying 20 lines of the tactic into the proof script, where tacticals would then need to be further

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

4 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

undone. (After debugging, they would then fold the changes back into the original.) Sometimes,

this process of undoing automation was “easy” (P3), but it could also be “frustrating” (P7).

P1’s experiences led them to change their style of automation. Previously, they had written

custom tactics to solve all cases of their proof at once. But the difficulty of determining which cases

were failing later led them to transition away from these tactics to finer-grained automation.

Other participants also described reasons to opt for less automation. In order to make their proof

developments accessible to undergraduate collaborators and to encourage understanding of the

“underlying structure” of the proofs, P10 chose to write these proofs with “more primitive tactics.”

P11 was concerned that, if they automated some but not all of their proof, they would reach a proof

state with goals where “it’s not clear what the relationship between them is.” As a result, P11 said,

“I struggle with the decision between trying to get everything automated away versus trying to

maintain a structure I can understand looking back.” The strategy of writing proofs more simply to

support inspection is not unique to our study participants: it also resembles practices employed in

engineering high-profile large-scale proofs [5, Section 2.3, for example].

Our study surfaced tensions between automation and interactivity, between automation and

debugging, and, more broadly, between automation and understanding. To reconcile these tensions,

we wish to transform deautomation from a tedious manual task to a smoother tool-assisted process.

4 Motivating Example
Consider this example of an automated proof, adapted from the exercise solutions to Logical
Foundations [17]. There is no need to know how the proof works. Instead, observe only that the

proof uses two kinds of tacticals: the semicolons described earlier, and the try tactical, which tries

a tactic and does nothing if the tactic fails. We will discuss other relevant details as we go along.

Theorem bevalR_beval :
∀ (b : bexp) (bv : bool),
bevalR b bv → beval b = bv.

Proof.
induction 1; simpl; intros;
try (rewrite aevalR_aeval in H, H0; rewrite H; rewrite H0);
reflexivity.

Suppose a user initially proved this theorem as an if-and-only-if statement, but they later realize

only the forward direction is relevant to them. To simplify the development, they decide to change

the theorem to a single implication. Refactoring the proofs is mostly straightforward — they just

delete the proofs for the backward direction — but bizarrely, the forward direction now fails! If the

user evaluates this script, the reflexivity tactic triggers an error message saying that n1 =? n2 and
aeval a1 =? aeval a2 cannot be unified. What is wrong here?

Without Deautomation. We start by walking through a potential set of steps for debugging this

proof manually. Of course, different users will have different debugging habits, but we provide this

sample walkthrough to demonstrate some sources of tedium that can occur.

Since the error message says reflexivity is failing, the user starts by changing the last semicolon

into a period, to try and see the place that fails. (We highlight the edit made in each step below.)

Proof.
induction 1; simpl; intros;
try (rewrite aevalR_aeval in H, H0; rewrite H; rewrite H0).
reflexivity.

But now the reflexivity succeeds, so where did the error go? The user steps back before the

reflexivity, where they see there are four goals. Upon closer examination, they realize that the first

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

Designing Proof Deautomation for Rocq 5

goal can in fact be solved with reflexivity, as can the second. So, to examine the failure, they opt to

skip the first two goals, as shown on the left, so that they can now see in full the proof state that

reflexivity is failing to execute on, as shown on the right:

Proof. a1, a2 : aexp
induction 1; simpl; intros; n1, n2 : nat
try (rewrite aevalR_aeval in H, H0; H : aevalR a1 n1

rewrite H; rewrite H0). H0 : aevalR a2 n2
3: { -
reflexivity. (aeval a1 =? aeval a2) = (n1 =? n2)

Certainly this does not seem solvable by reflexivity, but why is the proof in this state? To investigate,
the user can remove an earlier semicolon, perhaps before the try.

Proof.
induction 1; simpl; intros.
3: {
try (rewrite aevalR_aeval in H, H0; rewrite H; rewrite H0).
reflexivity.

Stepping back and forth, they find the try does nothing, so they know a tactic inside failed. To find

the culprit, they start by separating out the first rewrite:

Proof.
induction 1; simpl; intros.
3: {
rewrite aevalR_aeval in H, H0.

Aha! It fails. The user realizes that the rewrite worked previously, when aevalR_aeval was an
if-and-only-if, but now that it is a single implication, they need to use apply instead.

Observe that in order to understand why the proof was failing, the user has to maneuver their

way around the automation constructs — e.g., the semicolon and try tacticals.

With Deautomation. Deautomation aims to protect the user from the tedium of this manual

maneuvering by returning a version of the script free of automation. In this case, deautomating the

original script immediately outputs:

0 Proof.
1 induction 1.
2 - simpl. intros. reflexivity.
3 - simpl. intros. reflexivity.
4 - simpl. intros.
5 (* tried and failed to run:
6 rewrite aevalR_aeval in H, H0. *)
7 Fail reflexivity. admit.
8 - simpl. intros.
9 (* tried and failed to run:
10 rewrite aevalR_aeval in H, H0. *)
11 Fail reflexivity. admit.

The user can immediately jump to the intermediate point in the third case where reflexivity is

failing (Line 7). They can also see a trace (Lines 5–6) of the failed tactics within the try. They can

now use this information to find the bug described earlier.

Beyond assisting the user with pinpointing the location and cause of failure, deautomation also

supports their understanding of the proof overall. For example, if the user wants to understand why

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

6 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

the first two cases (Lines 2–3) succeed, they can readily inspect the proof steps there. Moreover,

the user can also inspect the fourth case (Lines 8–11) and see that it is failing for the same reason.

5 Design Considerations
Having motivated why we want to deautomate proofs, we next discuss considerations when

designing deautomation. Considerations include what deautomation should output, especially on

failing proofs, and how users can exercise control over what is deautomated.

5.1 Desirable Outputs
Consider the example proof script from §2 with “destruct b; simpl; reflexivity.” We could, in theory,

deautomate this proof into

Proof. destruct b. 1: simpl. 2: simpl. 1: reflexivity. 1: reflexivity.

Such a proof mimics the order tactics are executed in the automated proof. But it would be unusual

to write a proof in this format; instead, a user is likely to work on one goal at a time:

Proof.
destruct b.
- simpl. reflexivity.
- simpl. reflexivity.

In our view, this is what deautomation should output. That is, a deautomated proof script should

resemble the format of a proof that a user would plausibly write when not using automation.

5.2 Failure Recovery
Users in our need-finding study indicated they especially want to better understand their automation

when faced with a failing proof. Automated proofs are often “all or nothing”: either they solve the

goal completely, or (as in §4) they fail completely. Deautomation, by contrast, needs to support

failure recovery — deautomating a failing proof should provide an informative result.

What do we mean by “informative”? Our rule of thumb is that, via deautomation, users should

be able to access the information they want about their automated proofs as readily and flexibly as

they could if they had written their proofs without automation. This rule shapes what deautomation

should look like up to and beyond points of failure.

Before a failure, any number of tactics may have succeeded, providing important context about

what progress has been made in the proof. This context should be preserved by deautomation, so

that users can step through the deautomated script preceding a failure and interact with the failing

step. In §4, this context included the two successful cases, the initial successful tactics in the failing

case, the trace of the no-op try, and the localized report that reflexivity failed.

We have several options for how to continue beyond a point of failure, if at all. We stated above

that users should be able to work flexibly with deautomated scripts. When users work with proofs

where different branches — the cases in a proof by induction, for example — are explicit, they

can choose what branches they want to address, and in what order. For deautomation to provide

the same flexibility, it should support recovering from failures on multiple branches (though not

multiple failures on the same branch). Again, the example in §4 is consistent with this aim, where

the user could choose to examine either of the failing branches, or both.

Failure recovery becomes even more complex when handling tacticals such as first, where first
[𝑡1 | . . . | 𝑡𝑛] tries each 𝑡𝑖 in the list until one succeeds. That is, first provides its own internal failure

recovery! When 𝑡1 fails, first recovers from this failure and continues on to 𝑡2. The presence of both

external failure recovery via deautomation and internal failure recovery via first requires careful
consideration of how these should interact.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

Designing Proof Deautomation for Rocq 7

5.3 Levers for Control
Deautomation turns a compact script into a more verbose one. Depending on the needs of the user,

details in different parts of this script may be more or less useful. We want our deautomation tool

to allow the user to exert some control over what is deautomated.

Returning to §4, by default all of the tacticals in the proof are selected for deautomation:

Proof.
induction 1 ; simpl ; intros ;
try (rewrite aevalR_aeval in H, H0 ;

rewrite H ; rewrite H0) ;
reflexivity.

If the user, for example, has no desire to see individual invocations of simpl and intros in the

deautomated script, they may prefer to deselect the corresponding semicolons to opt them out of

deautomation, i.e. induction 1 ; simpl ; intros ; . Then, the output begins instead with

Proof.
induction 1; simpl; intros.
- reflexivity.

An additional aspect that the user may want to control is whether to deautomate the internals of

custom tactics. The user should be able to decide whether to treat a custom tactic opaquely, as they

would any built-in tactic, or transparently, which exposes it for deautomation.

6 Technical Details
With the design considerations in mind, we next introduce a formal theory of deautomation, as

well as a proof-of-concept implementation.

6.1 Grammar
We start by defining the subset of Ltac that we support. The grammar is stratified into atomic

tactics, tactics, sentences, and scripts.

Atomic tactics are opaque to deautomation. To reason about how they behave, we assume a

black-box run-atomic function that determines the result of executing atomic tactics. Its type is

atomic→ goal→ (list goal + ⊥𝑛). That is, executing an atomic tactic on a goal returns either a list

of goals or ⊥𝑛 , representing a failure at what Rocq calls failure level 𝑛.
Tactics 𝑡 are defined as follows:

𝑡 := 𝑎 | 𝑡 ; 𝑡 | first [𝑡 | · · · | 𝑡] | 𝑇
| idtac | 𝑡 ; [𝑡 | · · · | 𝑡] | progress 𝑡 | fix 𝑇 𝑡

The variable 𝑎 ranges over atomic tactics. The idtac does nothing. For semicolons, 𝑡1 ; 𝑡2 executes
𝑡2 on all goals generated by 𝑡1, while 𝑡 ; [𝑡1 | . . . | 𝑡𝑛] executes 𝑡𝑖 on the 𝑖th goal generated by 𝑡 . The

tactical first behaves like the first tactic from its argument list that succeeds; it fails if they all fail.

The progress tactical behaves like its tactic argument if it succeeds and changes (progresses) the

goal, or fails otherwise. The fixpoint combinator fix, with bound tactic variable𝑇 , enables recursive

tactics. We assume tactics are closed, with variables appearing within corresponding fix binders.
Other common tacticals can be derived [14] from these, such as try and repeat.
Beyond tactics, we also have sentences and scripts. A sentence is a tactic plus an annotation,

where all: 𝑡 means 𝑡 is executed on all goals, and 𝑛: 𝑡 means 𝑡 is executed on the 𝑛th goal. Scripts

are roughly lists of sentences, except that they can also contain curly braces that focus goals. Due

to space constraints, we generally elide explanations about deautomation of sentences and scripts,

since most of the interesting details occur at the tactic level.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

8 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

6.2 Deautomation Algorithm
The algorithm has two parts: treeification, which captures the relevant information about the

execution of the script in an intermediate tree representation, and extraction, which extracts the

deautomated script from the tree. We start by focusing on non-failing scripts with only semicolons.

Treeification. Trees are a useful intermediate representation during deautomation. For the mo-

ment, a tree 𝑟 is defined as follows:

𝑟 := hole 𝑔 | node 𝑎 𝑔 𝑟★

A hole represents an unsolved goal 𝑔, and a node represents the execution of an atomic tactic 𝑎 on

a goal 𝑔, with children 𝑟★ recursively representing executions on the goals produced by 𝑎 on 𝑔.

The function treeify takes two inputs, a tactic 𝑡 and a goal 𝑔, and proceeds by recursion on 𝑡 .

Conceptually, treeification parallels tactic execution. When executing 𝑡1 ; 𝑡2 on 𝑔, we execute 𝑡1 on 𝑔,
resulting in goals 𝑔𝑠 , then execute 𝑡2 on each goal in 𝑔𝑠 . When treeifying, we first compute treeify
𝑡1 𝑔, resulting in tree 𝑟 , then replace each hole 𝑔′ in 𝑟 with the result of treeify 𝑡2 𝑔′.

For example, treeifying the script “destruct b ; simpl ; reflexivity” in the context of the example

andb_true_r from §2 would eventually result in this tree:

node refl (T = T) node refl (F = F)

node simpl (T && T = T) node simpl (F && T = F)

node (destruct b) (b && T = b)

We use some abbreviations for formatting reasons: T for true, F for false, and refl for reflexivity.
Appendix A gives a step-by-step construction of this tree.

Extraction. After constructing a tree from an automated script, we extract a deautomated script

by traversing it in depth-first order, reading off the tactic from each node.

6.3 Deautomation with Failure Recovery
We extend the algorithm to support deautomation of non-semicolon tacticals and failing proofs.

Basics of Recovery. We use failed in a tree to indicate that error 𝑒 occurred at goal 𝑔, where 𝑒

records the atomic tactic 𝑎 that failed.

𝑟 := . . . | failed 𝑒 𝑔 𝑒 := failureatom 𝑎

For example, suppose we made a mistake and instead tried to prove an erroneous lemma claiming

b && false = b. Treeification on the same script will now construct this tree:

failed (failureatom refl) (F = T) node refl (F = F)

node simpl (T && F = T) node simpl (F && F = F)

node (destruct b) (b && F = b)

As described in §5.2, we support recovering from failures on multiple branches, so we still reach

the reflexivity on the right even though the reflexivity on the left failed. The final step is to extract

an automation-less script. In the example, this is:

Proof.
destruct b.
simpl. Fail reflexivity. admit.
simpl. reflexivity.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

Designing Proof Deautomation for Rocq 9

The Fail command on a tactic 𝑡 succeeds if 𝑡 fails, allowing the extracted script to communicate the

failure that occurred without actually failing.

Recording the Initial Failure. We alluded in §5.2 to the fact that the internal failure recovery of

first interacts in complex ways with the external failure recovery of deautomation. In particular,

first behaves differently depending on how the tactics within it fail.

Ltac has multiple failure levels, which we write as ⊥𝑛 for natural numbers 𝑛. If executing some

tactic 𝑡 within a first tactical fails at ⊥0, then the next tactic in the list provided to first is tried.
If 𝑡 fails at ⊥𝑆 (𝑛) , then first itself fails at ⊥𝑛 . Hence, correctly deautomating first requires us to
correctly handle failure levels throughout the deautomation algorithm.

To do so, we change the return type of treeify from tree to a new type constructor 𝑅treeify,

parameterized by a type 𝑥 :

𝑅treeify 𝑥 := yes 𝑥 | recov 𝑥 𝑛 | no 𝑛

The new return type of treeify is 𝑅treeify tree. That is, there are three cases for what can happen

during treeification. The yes case says everything succeeded and returns a tree. The recov case
says one or more failures occurred, but we were able to recover from these failures, so we can still

return a tree; it also records the level 𝑛 of the initial failure encountered. Finally, the no case says

one or more failures occurred and we could not recover from the last one; it again records the level

𝑛 of the initial failure.

We explicitly record the failure level, and specifically the level of the initial failure, in order to

preserve the semantics of first. Why? If we have a tactic 𝑡 where we encounter and recover from

multiple failures when constructing a tree 𝑟 , we cannot determine the initial failure in the original

𝑡 from 𝑟 alone. For example, consider the script

𝑡 := split ; [idtac | fail 0] ; [fail 1 | idtac]

The fail 𝑛 tactic fails on any goal at ⊥𝑛 , and idtac does nothing. On goal 𝑔 ∧ ℎ, we construct:

failed (failureatom (fail 1)) 𝑔 failed (failureatom (fail 0)) ℎ

node split (𝑔 ∧ ℎ)

If 𝑡 appears as an argument to first, we will need to know that it fails at ⊥0 instead of ⊥1, but this
information is not apparent from the tree, since construction continued past the initial “fail 0” in
the second branch until it encountered the “fail 1” in the first branch. To resolve this issue, we

remember the initial failure level in the 𝑅treeify result type.

Recording the initial failure level allows us to deautomate first correctly, but there are also

questions of how to deautomate first informatively. For example, suppose we have first [𝑡1 | 𝑡2],
and 𝑡1 fails while 𝑡2 succeeds, so the overall tactic behaves like 𝑡2. It would be correct to just return

the deautomation of 𝑡2, but it would be much more informative to also retain information about

why 𝑡1 failed. So, we add a new tree construct:

𝑟 := . . . | trace (list 𝑟) 𝑟

The second argument to trace contains the tree for the last attempted tactic, while the first argument

contains a list of the trees for the rest of the attempted tactics.

A subtlety remains: what if first is applied to an empty list of tactics? The semantics dictates

that first [] should fail. We discuss how to handle this class of failure next.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

10 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

Incorporating Tactic-Level Failures. Up until now, our definition of errors 𝑒 only included atomic
failure, which represents an atomic tactic 𝑎 failing on some goal. But not all failures can be localized

to an atomic failure. For example, first [] fails, but there are no atomic tactics at all in this term.

Tactic failures can also occur in 𝑡 ; [𝑡1 | . . . | 𝑡𝑛], when 𝑛 does not match the number of goals

generated by 𝑡 , and progress 𝑡 , when 𝑡 succeeds but does not change the goal.

We therefore add a second kind of failure, tactic failure, to our definition of 𝑒:

𝑒 := . . . | failuretac 𝑡

Then, for first [], we construct the tree failed (failuretac (first [])) g.
One other tactic-level “failure” needs to be considered. Our language supports, through fixpoints,

the possibility of non-terminating tactic execution. To ensure treeification terminates, we supply

fuel to the algorithm, which decrements with each iteration. If fuel reaches zero, we indicate in the

tree an out-of-fuel error. Incorporating this information into the tree allows us to retain the trace

of tactics up until that point instead of failing globally.

Incorporating Sentence- and Script-Level Failures. We mentioned previously that our grammar

also includes sentences and scripts. We do not recover from sentence- and script-level failures, as

they are orthogonal to our goal of recovering from failures that relate to tactic-based automation.

We use the no case from the definition of 𝑅treeify here.

Further Details. We provide some pseudocode for deautomating atomic tactics, semicolons, and

first in Appendix B. The full algorithm (and proof of correctness, described shortly) is here
1
.

6.4 Correctness
To reason about the correctness of our deautomation algorithm, we need a formal model of how

Ltac scripts behave. For atomic tactics, we rely on a black-box run-atomic function. For other
tactics, we use the semantics from [14, Chapter 6]. At a high level, execution of a tactic 𝑡 on a goal

𝑔 results in either a list of goals 𝑔𝑠 , which is empty if 𝑡 solved 𝑔, or a failure state ⊥𝑛 .
This model of Ltac semantics is a simplified approximation of the actual Ltac semantics. In

particular, we do not model unification or backtracking. These limitations are obvious directions for

future work (§9). For now, however, our priority is not to model the full complexity of Ltac, but
rather to carve out a subset that allows us to explore interesting questions about deautomation.

Our proof begins with properties about treeification and extraction, then glues these together to

prove this theorem: deautomating a non-failing proof on a goal 𝑔 will output a proof that behaves

the same as the original proof on 𝑔. For failing proofs, failure recovery intentionally outputs a

proof that behaves differently from the original; however, we instead prove that the extracted script

executes without failing. We mechanize these proofs in Rocq. Appendix C contains a proof sketch.

6.5 Proof-of-Concept Implementation
We have implemented the theory above as a proof-of-concept VS Code extension that provides a

concrete demonstration of our theoretical contributions and illustrates how deautomation might fit

into an interactive programmer workflow.

With this extension, the user’s proof is loaded into a side panel, and they see the “levers for control”

described in §5.3. In particular, they can deselect tacticals to exclude them from deautomation.

They can also opt to treat certain custom tactics as transparent, which inlines the body of that

tactic during deautomation. (This feature is still quite preliminary: we only support custom tactics

1
https://github.com/jwshii/deauto-artifact

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

https://github.com/jwshii/deauto-artifact

Designing Proof Deautomation for Rocq 11

that are abbreviations — i.e., that do not have arguments — and that fall within our subset of Ltac.)
After the user adjusts what they want to deautomate, the extension deuatomates the proof.

The implementation also contains some additional features, such as integration with Rocq’s

built-in info_auto for deautomating the auto tactic, and pretty-printing with bullets.

7 Advanced Example
We walk through a more advanced example of deautomation that exercises features not covered by

§4. This proof is adapted from Verified Functional Algorithms [2]. Suppose a user is learning about

binary-search tree proofs, and they encounter in their textbook this theorem:

Theorem lookup_insert_eq :
∀ (V : Type) (t : tree V) (d : V) (k : key) (v : V),
lookup d k (insert k v t) = v.

Proof. induction t; intros; bdall.

The bdall tactic is defined to be

Ltac bdall := repeat (simpl; bdestructm; try lia; auto).

Note that the try tactical can be derived from first, and repeat from a combination of fix, progress,
and try, so collectively, this proof script exercises most of our deautomation algorithm.

Given that they did not write this proof themselves, the user is not particularly confident about

why it works, so they would like to be able to step through and examine the details. Turning to

deautomation, they choose to make bdall transparent, so that they can deautomate its contents.

They click “deautomate,” and voilà!

Proof.
induction t.
- intros. simpl. bdestructm.
+ lia.
+ idtac. simpl. bdestructm.

* lia.
* simple apply @eq_refl.

- intros. simpl. bdestructm.
+ idtac. simpl. bdestructm.

* simple apply IHt1.
* lia.

+ idtac. simpl. bdestructm.
* idtac. simpl. bdestructm.

- - lia.
- - idtac. simpl. bdestructm.

++ simple apply IHt2.
++ lia.

* idtac. simpl. bdestructm.
- - lia.
- - idtac. simpl. bdestructm.

++ lia.
++ simple apply @eq_refl.

The deautomated script immediately reveals much more information about the underlying

structure of the proof. For example, it is apparent that the repeat in bdall is being put to good use,

as the tactics within are invoked many times.

Beyond static information, the user can now step to intermediate goals they wish to inspect.

For example, they may wonder what goals lia is solving. In the deautomated script, they can see

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

12 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

precisely the places where lia succeeds; jumping to those locations, they see that these are cases

where there are contradictory assumptions (e.g., 𝑘0 < 𝑘 and 𝑘 ≥ 𝑘0).

Note also that, while the custom tactic bdestructm contains automation we do not support, this

does not prevent deautomating the surrounding proof by simply continuing to treat it as opaque.

This example shows the complementary strengths of automated and deautomated proof scripts:

automated scripts are succinct and powerful; deautomated scripts are flexible and informative.

8 Related Work
Our goal in this paper has been to expand a proof script so as to provide more points in its

execution where its behavior can be inspected. Prior work has addressed related goals. Our closest

predecessors are Pons’s PhD thesis [20] and Adams’s Tactician tool [1].

Pons presents in [20, Section 4.3] an algorithm for tactic expansion. Tactic expansion transforms

Rocq proof scripts containing semicolon 𝑡 ; 𝑡 and branching 𝑡 ; [𝑡 | . . . | 𝑡] tacticals into individual

steps. For example, as per [20, Appendix D], the script “A; B; [C | D | E | F]; G.” would, in the

appropriate context, be expanded into:

1: A. 1: B. 3: B. 1: C. 1: G. 1. D. 1: E. 1: F. 1. G.

Pons generates graphical visualizations of proof trees. He also shows how to modify the expansion

algorithm to support failure localization by moving failing tactics to the end of the script.

There are many notable similarities between Pons’s expansion and the deautomation explored

here. Both achieve the effect of allowing the user to step through the individual tactics in their

proof, and both consider the issue of handling failing proofs. Our work goes beyond Pons’s in

(1) supporting deautomation of several tacticals besides semicolon and branching — for example,

as we have seen, tacticals such as first require especially careful consideration in the context of

failure recovery — and (2) offering a more rigorous treatment of the deautomation procedure and

its formal properties.

The Tactician tool [1] supports unraveling of HOL Light tactical connectives into a step-by-step

proof. We share the broad approach of modeling a proof as a tree and constructing that tree by

recording the behavior of tactics as they are applied. The main difference is that Tactician does not

appear to support failure localization or recovery. Also, Tactician only discusses how to address HOL

Light’s equivalent of semicolon and branching tacticals. Conversely, Tactician’s implementation is

more robust than our current prototype.

Our work is also related to techniques that improve the visibility of intermediate proof states. Our

approach is to transform the proof script in a way that explicitly recovers intermediate proof steps,

but there are other ways to improve visibility. In particular, others have developed visual debuggers

for tactics [11] and new tactic languages that afford inspection of the flow of subgoals [7, 13]. We

see deautomation as a useful way to work with existing tactic languages, and as providing a kind

of ready-made trace of what a proof does during a debugging session.

Even when users are shown the state of a proof, they still may need help understanding it.

Robert’s PeaCoq tool [22] augments displays of proof obligations to highlight how those obligations

have changed after the application of a tactic, particularly highlighting which obligations have

been addressed and which have been introduced. Furthermore, as some in the proof assistant

community have pointed out [6, 18], formal proofs can sometimes helpfully be augmented with

diagrammatic notations, as in visualizations of heaps and hydra diagrams. One complement to

proof deautomation might be toolkits for creating domain-specific visual descriptions of state, such

as those already developed for the Lean proof assistant [16].

Deautomation aims to enable more efficient manipulation of a proof. The kinds of graphical

editing [13] and drag-and-drop [10] interfaces proposed in the proof assistant literature could have

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

Designing Proof Deautomation for Rocq 13

a place in helping users reorder and restructure tactics in deautomated proofs. Interfaces from the

broader interactive programming tools literature for exposing program state in-situ [15] and for

debugging streams [24] could also accelerate inspection of subgoals around sites of automation.

Deautomation might be less necessary if proofs were made more robust to breaking changes that

necessitate inspection. For instance, they could be updated with automatically generated patches

as their specifications change [21]. We see deautomation as a complement to automated fixes, in

the situations where a user by preference or circumstance cannot rely on automation to fix itself.

Deautomation shares some conceptual similarities with work on resugaring [19], which also

considers how traversing different levels of abstraction can affect user understanding.

9 Future Work
Evaluating Deautomation. An evaluative user study would be useful in verifying our claim that

deautomation helps users better understand their automated proofs. Such a user study could

quantitatively measure whether, for example, using our deautomation tool decreases the time

spent on debugging tasks. It could also qualitatively describe how deautomation fits into users’

workflows, and whether it affects the way users use automation.

Expanding the Scope of Deautomation. We chose to support a subset of Ltac, focusing on a range

of tacticals, and to employ a simplified model of Ltac semantics that treats atomic tactics and goals

as opaque. This tightly defined scope serves as a rich starting point for establishing a core of what

effective deautomation looks like, but it certainly should not be the endpoint.

One important avenue for future work would be considering backtracking and unification, which

we discuss further in Appendix D. Another would be to support non-tactical Ltac machinery such

as match goal. A third would be to look at Ltac2, a successor to Ltac.

Reautomation. The inverse of deautomation is reautomation — that is, the process of rolling

automation back up after the user has inspected andmodified it. Notably, this is distinct from general

utilities for automating proofs [1, 20], as a user of reautomation may wish that the reautomated

proof preserves the design of their original automated script.

One challenge would be how to infer precisely what a user wants out of reautomation after

they have edited a deautomated script. Consider the example from §4 once more. Suppose the user

reviews the deautomated script, finds the bug, and fixes it on the third branch, but not the fourth.

What is the right outcome of reautomation in this case? We could assume that the user intends to

change the fourth branch in the same way. This would lead to a reautomated proof that retains the

same structure and makes the modification on all failing branches. We could instead interpret the

user’s edits literally, where the reautomated proof now behaves differently in the third and fourth

branches, perhaps by using the ; [| |] construct. Reautomation would have to be designed in a way

that correctly anticipates when a change is meant to be folded into additional branches.

Another challenge is mapping changes in a deautomated script to its automated form. To achieve

this mapping, it is likely necessary to maintain a record linking expressions in the original script to

the deautomated script. Edits to one script need to be mapped to the other. To do so in a coherent,

composable way, it may require bidirectional programming approaches such as lenses [12].

A Treeification Example
We show how the example tree from §6.2 is constructed incrementally. Recall that the proof is

Lemma andb_true_r (b : bool) : b && true = b.
Proof.
destruct b; simpl; reflexivity.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

14 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

First, treeifying the atomic tactic “destruct b” on the initial goal would result in this tree:

hole (T && T = T) hole (F && T = F)

node (destruct b) (b && T = b)

...treeifying “destruct b ; simpl” would result in this tree:

hole (T = T) hole (F = F)

node simpl (T && T = T) node simpl (F && T = F)

node (destruct b) (b && T = b)

...and treeifying the entire script would result in this tree:

node refl (T = T) node refl (F = F)

node simpl (T && T = T) node simpl (F && T = F)

node (destruct b) (b && T = b)

B Pseudocode Algorithm
Recall that trees 𝑟 and errors 𝑒 are defined as follows:

𝑟 := hole 𝑔 𝑒 := failureatom 𝑎

| node 𝑎 𝑔 𝑟★ | failuretac 𝑡
| failed 𝑒 𝑔 | out-of-fuel
| trace (list 𝑟) 𝑟

Recall that we use 𝑅treeify in return types, defined as follows:

𝑅treeify 𝑥 := yes 𝑥 | recov 𝑥 𝑛 | no 𝑛
To sequence computations involving 𝑅treeify, we define a monad instance, where

return 𝑥 = yes 𝑥
𝑚𝑥 >>= k = match𝑚𝑥 with

| yes 𝑥 ⇒ 𝑘 𝑥

| recov 𝑥 𝑛⇒ match 𝑘 𝑥 with
| yes 𝑥 '⇒ recov 𝑥 ' 𝑛
| recov 𝑥 ' _⇒ recov 𝑥 ' 𝑛
| no _⇒ no 𝑛

| no 𝑛⇒ no 𝑛
In the recov case, where a failure at level 𝑛 already occurred, that level is retained by threading the

initial level through the rest of the computation. We write let 𝑥 ←𝑚𝑥 in 𝑘 𝑥 for𝑚𝑥 >>= 𝑘 .

Treeification. We define the treeify function, which is defined mutually with treeifyfirst. There
are also some auxiliary functions that we sketch at the end.

treeify : tactic→ goal→ 𝑅treeify tree
treeify 𝑎 𝑔 = match run-atomic 𝑎 𝑔 with

| 𝑔𝑠 ⇒ yes (node 𝑎 𝑔 (map hole gs))
| ⊥𝑛 ⇒ recov (failed (failureatom 𝑎) 𝑔) 𝑛

treeify (𝑡1; 𝑡2) 𝑔 = let 𝑟 ← treeify 𝑡1 𝑔
in applyAllTree (treeify 𝑡2) 𝑟

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

Designing Proof Deautomation for Rocq 15

treeify (first 𝑡𝑠) 𝑔 = match treeifyfirst 𝑡𝑠 𝑔 with
|𝑚𝑟𝑠 · [𝑚𝑟] ⇒ let 𝑟 ←𝑚𝑟 , 𝑟𝑠 = getTrees𝑚𝑟𝑠

in return (trace 𝑟𝑠 𝑟)
| []⇒ recov (failed (failuretac 𝑡) 𝑔) 0

treeifyfirst : list tactic→ goal→ list (𝑅treeify tree)
treeifyfirst [] 𝑔 = []
treeifyfirst (𝑡 :: 𝑡𝑠) 𝑔 = match treeify 𝑡 𝑔 with

| yes 𝑟 ⇒ [yes 𝑟]
| recov 𝑟 0⇒ recov 𝑟 0 :: treeifyfirst 𝑡𝑠 𝑔
| recov 𝑟 𝑆 (𝑛) ⇒ [recov 𝑟 𝑛]

applyAllTree : (goal→ tree)→ tree→ tree
applyAllTree 𝑓 𝑟 traverses 𝑟 and replaces each hole 𝑔 with the result of 𝑓 𝑔

getTrees : list (𝑅treeify tree)→ list tree
getTrees𝑚𝑟𝑠 returns a list of the trees in𝑚𝑟𝑠

Extraction. We next define the extract function, which receives as input the tree constructed by

treeify. It outputs a list of tactics (i.e., the deautomated script) and also a list of admitted (unsolved)

goals. Keeping track of admitted goals helps us state our correctness properties.

extract : tree→ (list tactic, list goal)
extract (node 𝑎 𝑔 𝑟𝑠) = let (𝑔𝑠 , 𝑟𝑠 ') = extractList 𝑟𝑠 in (𝑎 :: 𝑟𝑠 ' , 𝑔𝑠)
extract (hole 𝑔) = (admit. , [𝑔])
extract (failed (failure 𝑡) 𝑔) = (Fail 𝑡 . admit. , [𝑔])

extractList : list tree→ (list tactic, list goal)
extractList 𝑟𝑠 is essentially concat (map extract 𝑟𝑠)

C Proof Sketch
We provide a sketch of the proof introduced in §6.4. It will be useful to distinguish between the root
goal and the leaf goals of a tree, defined as follows for hole and node (other cases are analogous):

rootGoal (hole 𝑔) = 𝑔 leafGoals (hole 𝑔) = [𝑔]
rootGoal (node _ 𝑔 _) = 𝑔 leafGoals (node _ _ 𝑟𝑠) = concat (map leafGoals 𝑟𝑠)

We first show the result of treeification is consistent with the semantics of the original tactic.

Lemma 1. If execution of tactic 𝑡 on goal 𝑔 results in goals 𝑔𝑠 , then treeification of 𝑡 for 𝑔 results in

yes 𝑟 , where the leaf goals of 𝑟 are 𝑔𝑠 . If execution of 𝑡 on 𝑔 results in failure ⊥𝑛 , then treeification

of 𝑡 for 𝑔 results in recov 𝑟 𝑛 or no 𝑛.

Next, treeification produces only valid trees, satisfying two conditions. First, for any node 𝑎 𝑔 𝑟𝑠
in the tree, the result of run-atomic 𝑎 𝑔 must match the root goals of 𝑟𝑠 . Second, for any failed 𝑒 𝑔
in the tree, the tactic that 𝑒 says fails must indeed fail on 𝑔. We do not validate out-of-fuel errors.

Lemma 2. If treeification of 𝑡 for 𝑔 results in yes 𝑟 or recov 𝑟 𝑛, then 𝑟 is valid.

For extraction, we might expect that, if we extract script 𝑝 from a tree 𝑟 , then execution of 𝑝

on the root goal of 𝑟 results in the leaf goals of 𝑟 . This is almost true, but not quite: since we use

admits in the extracted script, we need to instead rely on the record of admitted goals.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

16 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

Lemma 3. Given a valid tree 𝑟 , if extracting 𝑟 results in a script 𝑝 and admitted goals 𝑔𝑠 , then

execution of 𝑝 on the root goal of 𝑟 results in the empty list of goals, and the admitted goals 𝑔𝑠 are

equal to the leaf goals of 𝑟 .

(We could avoid the issue of admitted goals by, for example, offsetting tactics appearing after

an unsolved goal, so “split. admit. reflexivity.” would become “split. 2: reflexivity.” However, since
admit is already commonly used by users to mark unsolved goals, we chose to use it here too.)

We compose all these lemmas into a top-level theorem about deautomation of successful tactics:

Theorem. If execution of 𝑡 on 𝑔 results in goals 𝑔𝑠 , then

A. treeification of 𝑡 for 𝑔 results in yes 𝑟 , and
B. if extraction on 𝑟 results in a script 𝑝′ and admitted goals 𝑔𝑠′, then execution of 𝑝′ on 𝑔 results

in the empty list of goals, and 𝑔𝑠 = 𝑔𝑠′.

Proof. By Lemma 1, treeification does result in yes 𝑟 , and the leaf goals of 𝑟 are 𝑔𝑠 . By Lemma 2, 𝑟

is valid, so by Lemma 3, given extracted script 𝑝′ and admitted goals 𝑔𝑠′, we know 𝑝′ executes to
the empty list of goals and the leaf goals of 𝑟 are 𝑔𝑠′. Transitively, 𝑔𝑠 = 𝑔𝑠′. □

When tactic execution fails, if we recover and deautomate into some script 𝑝 , then we can show

this script executes without failing (though with some admits), allowing the user to step through

the script to understand what went wrong.

D More Complex Ltac Semantics
Readers familiar with Rocq may be wondering how (a) backtracking and (b) unification of existential

variables, which we do not consider in our simplified model of Ltac semantics, might interact with

deautomation. We describe some initial thoughts on these issues.

Backtracking. The tactical first, which we do deautomate, can be thought of as providing a limited,

local form of backtracking, where failures can cause additional tactics to be tried. As future work,

we would want to incorporate explicit backtracking tacticals like +. Consider this example:

Inductive example_ind : Prop :=
| bad : False → example_ind
| good : True → example_ind.

Goal example_ind.
Proof. (apply bad + apply good); easy.

In the script above, bad is applied, which leads to a goal where easy fails. This failure triggers

backtracking, so now good is applied, leading to a goal where easy succeeds.

This script behaves the same as

first [apply bad; easy | apply good; easy].

which we could deautomate into:

(* tried and failed to run: apply bad. easy. *)
apply good. easy.

Although backtracking tacticals would add a new layer of complexity to our deautomation theory,

we have already built useful foundations around how to deautomate first.
Backtracking is also an effect that can be implemented internally in a tactic such as constructor.

For example, suppose we have the same goal as above but with this proof:

Proof. constructor; easy.

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

Designing Proof Deautomation for Rocq 17

The same general sequence of steps as above occurs, but now the backtracking is internal to

constructor. Our current algorithm would erroneously output a script that behaves differently

from the original. In fact, we cannot deautomate this proof — that is, we cannot get rid of the

semicolon — without also unraveling the internal tactics tried by constructor.
But in our conception of deautomation, we do not peer inside of atomic, built-in tactics, so we

may not actually want to deautomate such a proof. One approach to handling such situations is to

dynamically detect when the deautomated script has in fact diverged in behavior from the original

and inform the user. This detection should not preclude us from deautomating scripts with tactics

like constructor in general, only those that rely on invisible backtracking.

Unification. Our model of Ltac semantics does not consider unification. However, we can still

deautomate many proofs containing e* tactics that create existential variables. For example, we

have no problem deautomating this proof

Goal ∃ x, x ≤ 0 ∧ x ≤ 1.
Proof.
(* can be deautomated *)
eexists. split; eauto.

(* into *)
eexists. split.
- simple apply le_n.
- simple apply le_S. simple apply le_n.

However, we have made the simplifying assumption that we can output the deautomated steps

in “linear” order, so that tactics are applied on goals in the order the goals are generated. This

causes us to incorrectly deautomate proofs such as this one, where the inequalities are swapped.

Goal ∃ x, x ≤ 1 ∧ x ≤ 0.
Proof.
(* cannot be deautomated *)
eexists. split; [| eauto]; eauto.

In this second proof, the ; [| eauto] not only solves the goal for the second inequality x ≤ 0,

but it also correctly instantiates the existential variable corresponding to x to be 0. In our current

algorithm, the deautomated output would instead solve the goal for the first inequality x ≤ 1 before

the second, which incorrectly instantiates x to be 1, causing the second inequality to be unsolvable.

An alternative approach to deautomation might preserve the order of the automated script:

1: eexists. 1: split. 2: eauto. 1: eauto.

In fact this output resembles that of Pons [20]. While this approach would assist the particular

issue of out-of-order existential variable unification, it may negatively impact the readability of

deautomated scripts in general, as discussed in §5.1.

Wewould be interested to examine in futurework how to balance these challenges of deautomated

scripts being maximally useful versus handling out-of-order unification.

References
[1] Mark Adams. 2015. Refactoring proofs with Tactician. In Revised Selected Papers of the Colocated Workshops of the

International Conference on Software Engineering and Formal Methods. doi:10.1007/978-3-662-49224-6_6
[2] Andrew W. Appel. 2024. Verified Functional Algorithms. Software Foundations, Vol. 3. Electronic Textbook. https:

//softwarefoundations.cis.upenn.edu/vfa-current/index.html

[3] Bernhard Beckert, Sarah Grebing, and Florian Böhl. 2015. A Usability Evaluation of Interactive Theorem Provers Using

Focus Groups. In Software Engineering and Formal Methods. doi:10.1007/978-3-319-15201-1_1

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

https://doi.org/10.1007/978-3-662-49224-6_6
https://softwarefoundations.cis.upenn.edu/vfa-current/index.html
https://softwarefoundations.cis.upenn.edu/vfa-current/index.html
https://doi.org/10.1007/978-3-319-15201-1_1

18 Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin C. Pierce

[4] Ann Blandford, Dominic Furniss, and Stephann Makri. 2016. Analysing Data: The Editor’s Work. Springer International
Publishing, 51–60. doi:10.1007/978-3-031-02217-3_5

[5] Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal Kolanski. 2012. Challenges and Experiences in Managing

Large-Scale Proofs. In Proceedings of the International Conference on Intelligent Computer Mathematics. doi:10.1007/978-
3-642-31374-5_3

[6] Shardul Chiplunkar and Clément Pit-Claudel. 2023. Diagrammatic Notations for Interactive Theorem Proving. In The
International Workshop on Human Aspects of Types and Reasoning Assistants. doi:10.5075/epfl-SYSTEMF-305144

[7] Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. 2007. Tinycals: Step by Step Tacticals. In Electronic Notes
in Theoretical Computer Science. doi:10.1016/j.entcs.2006.09.026

[8] Ana de Almeida Borges, Annalí Casanueva Artís, Jean-Rémy Falleri, Emilio Jesús Gallego Arias, Érik Martin-Dorel,

Karl Palmskog, Alexander Serebrenik, and Théo Zimmermann. 2023. Lessons for Interactive Theorem Proving

Researchers from a Survey of Coq Users. In Proceedings of the International Conference on Interactive Theorem Proving.
doi:10.4230/LIPIcs.ITP.2023.12

[9] David Delahaye. 2000. A Tactic Language for the System Coq. In Logic for Programming and Automated Reasoning.
doi:10.1007/3-540-44404-1_7

[10] Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. 2022. A Drag-and-Drop Proof Tactic. In Proceedings of the
International Conference on Certified Programs and Proofs. doi:10.1145/3497775.3503692

[11] Jim Fehrle. 2022. A Visual Ltac Debugger in CoqIDE. In The International Workshop on Coq for Programming Languages.
https://popl22.sigplan.org/details/CoqPL-2022-papers/1/A-Visual-Ltac-Debugger-in-CoqIDE

[12] John Nathan Foster. 2009. Bidirectional Programming Languages. Ph. D. Dissertation. https://www.proquest.com/

docview/304986072/abstract/11884B3FBDDB4DCFPQ/1

[13] Gudmund Grov, Aleks Kissinger, and Yuhui Lin. 2013. A Graphical Language for Proof Strategies. In Proceedings of the
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. doi:10.1007/978-3-642-45221-
5_23

[14] Wojciech Jedynak. 2013. Operational Semantics of Ltac. Master’s thesis.

[15] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visualization for Live Programming. In Proceedings of
the Conference on Human Factors in Computing Systems. doi:10.1145/3313831.3376494

[16] Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner. 2023. An Extensible User Interface for Lean 4. In Proceedings
of the Internaitonal Conference on Interactive Theorem Proving. doi:10.4230/LIPIcs.ITP.2023.24

[17] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin

Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. 2024. Logical Foundations. Software Foundations, Vol. 1. Electronic Textbook.
http://softwarefoundations.cis.upenn.edu

[18] Clément Pit-Claudel. 2020. Untangling Mechanized Proofs. In Proceedings of the International Conference on Software
Language Engineering. doi:10.1145/3426425.3426940

[19] Justin Pombrio. 2018. Resugaring: Lifting Languages through Syntactic Sugar. Ph. D. Dissertation. https://github.com/

justinpombrio/thesis

[20] Olivier Pons. 1999. Conception et réalisation d’outils d’aide au développement de grosses théories dans les systèmes de
preuves interactifs. Ph. D. Dissertation. https://cedric.cnam.fr/~pons/PAPERS/these.pdf

[21] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2018. Adapting Proof Automation to Adapt Proofs. In

Proceedings of the International Conference on Certified Programs and Proofs. doi:10.1145/3167094
[22] Valentin Robert. 2018. Front-end tooling for building and maintaining dependently-typed functional programs. Ph. D.

Dissertation. https://escholarship.org/uc/item/9q3490fh

[23] Jessica Shi, Benjamin Pierce, and Andrew Head. 2023. Towards a Science of Interactive Proof Reading. In Plateau
Workshop. doi:10.1184/R1/22277317.v1

[24] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent Code Explorer for Data Wrangling. In

Proceedings of the Symposium on User Interface Software and Technology. doi:10.1145/3472749.3474744
[25] Rocq Development Team. 1989–2025. The Rocq Prover. https://rocq-prover.org/

PLATEAU Workshop on Programming Languages and Human-Computer Interaction. Publication date: March 2025.

https://doi.org/10.1007/978-3-031-02217-3_5
https://doi.org/10.1007/978-3-642-31374-5_3
https://doi.org/10.1007/978-3-642-31374-5_3
https://doi.org/10.5075/epfl-SYSTEMF-305144
https://doi.org/10.1016/j.entcs.2006.09.026
https://doi.org/10.4230/LIPIcs.ITP.2023.12
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/3497775.3503692
https://popl22.sigplan.org/details/CoqPL-2022-papers/1/A-Visual-Ltac-Debugger-in-CoqIDE
https://www.proquest.com/docview/304986072/abstract/11884B3FBDDB4DCFPQ/1
https://www.proquest.com/docview/304986072/abstract/11884B3FBDDB4DCFPQ/1
https://doi.org/10.1007/978-3-642-45221-5_23
https://doi.org/10.1007/978-3-642-45221-5_23
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.4230/LIPIcs.ITP.2023.24
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1145/3426425.3426940
https://github.com/justinpombrio/thesis
https://github.com/justinpombrio/thesis
https://cedric.cnam.fr/~pons/PAPERS/these.pdf
https://doi.org/10.1145/3167094
https://escholarship.org/uc/item/9q3490fh
https://doi.org/10.1184/R1/22277317.v1
https://doi.org/10.1145/3472749.3474744
https://rocq-prover.org/

	Abstract
	1 Introduction
	2 Background on Rocq
	3 Need-Finding Study
	4 Motivating Example
	5 Design Considerations
	5.1 Desirable Outputs
	5.2 Failure Recovery
	5.3 Levers for Control

	6 Technical Details
	6.1 Grammar
	6.2 Deautomation Algorithm
	6.3 Deautomation with Failure Recovery
	6.4 Correctness
	6.5 Proof-of-Concept Implementation

	7 Advanced Example
	8 Related Work
	9 Future Work
	A Treeification Example
	B Pseudocode Algorithm
	C Proof Sketch
	D More Complex Ltac Semantics
	References

