Interactive
Program
Distillation

Andrew Head
UC Berkeley

This talk will begin at
10:03am PST.

o

L
i

)

A sample program

That's it, that's all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] Of [new DragonCoin(...,...)] and then add them to our list of pickups, fc

the player only:

1 c¢lass MarioLayer extends LevelLayer {

2 [+en]

3 MarioLayer (Level owner) {

a [ene])

-

6 // add coints above the horizontal platforms
7 addCoins (928, height-236,96);

8 addCoins (912, height-140,128);

9 addCoins (1442 ,height-140,128);
10

11 // add a dragon coin at the start

2 addForPlayerOnly(new DragonCoin(352,height-164));
13 }

14

15 // a handy function for placing lots of coins
16 void addCoins(fleoat x, float y, float w) {

17 float step = 16, L = 0, last = w/step;

18 for(i=0; &

19 addForPlayerOnly(new Coin(x+B+i*atep,y));
20 }
21 }
22)

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position [x/y] and spanning a width of [w]. We use the [step] value to space out our coins, usir
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
"for the player only", as is obvious from the [addForPlayerOnly(...)] function name. The
result? Why, let's play our updated game and see for ourselves:

Now with shiny coins!

A sample program

That's it, that's all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] Of [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

' |® 1. Written instructions

... Now 1f we want to use them in our game, we simply

3 MarioLayer(Level owner) {

make [new Coin(...,...)] or [new

// add coints above the horizontal platforms

oo DragonCoin(...,...)] and then add them to our list
of pickups, for the player only:

11 // add a dragon coin at the start
12 addForPlayerOnly(new DragonCoin(352, height-164));
13 }

// a handy function for placing lots of coins

void addCoins(fleoat x, float y, float w) {
float step = 16, L = 0, last =« w/step;
for(i=0; %

9 addForPlayerOnly(new Coin(x+B+i*atep,y));

J S e
(<] & ~J » U &

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position [x/y] and spanning a width of [w]. We use the [step] value to space out our coins, usir
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
"for the player only", as is obvious from the [addForPlayerOnly(...)] function name. The
result? Why, let's play our updated game and see for ourselves:

Now with shiny coins!

A sample program

’ 1. Written instructions

That's it, that's all we have to define. Now if we want to use them in our game, we simply make [n
Coin(.eeuyens)] Or [new DragonCoin(...,...)]) and then add them to our list of pickups, fc
the player only:

... Now 1f we want to use them in our game, we simply

MarioLayer(Level owner) {

@ make [new Coin(...,...)] or [new

DragonCoin(..., ...)] and then add them to our list
of pickups, for the player only:

addCoins (912, height-140,128);
addCoins (1442, height-140,128);

1 // add a dragon coin at the start
addForPlayerOnly(new DragonCoin(352, height-164));
}

// a handy function for placing lots of coins
void addCoins(float x, float y, float w)
float step = 16, L = 0, last =« w/step;
for(i=0; &
addForPlayerOnly(new Coin(x+B+i*step,y));
}

N o b b e b e e e e
(- (Ve) (& ¢ - on W - (%) N (&) (Ve) (& ¢) -4 on W

21 }
:~\)

class MarioLayer extends LevelLayer {
The [addCoins] function is a convenient function that lets us add a string of coins starting at
position [x/y] and spanning a width of [w]. We use the [step] value to space out our coins, usir [..]
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins

"for the player only", as is obvious from the [addForPlayerOnly(...)] function name. The M ar i OL ay er (L eve l owner) {

result? Why, let's play our updated game and see for ourselves:

// add coints above the horizontal platforms
addCoins (928, height-236,96);

addCoins(912,height-140,128);
addCoins(1442,height-140,128);

// add a dragon coin at the start
addForPlayerOnly(new DragonCoin(352,height-164));

Now with shiny coins!

A sample program

\

That's it, that's all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] Of [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

1 c¢lass MarioLayer extends LevelLayer {
2 [+en]
3 MarioLayer (Level owner) {

[.e:]

// add coints above the horizontal platforms
7 addCoins (928, height-236,96);
addCoins (912, height-140,128);
addCoins (1442 ,height-140,128);

// add a dragon coin at the start
2 addForPlayerOnly(new DragonCoin(352, height-164));

13 }

14

15 // a handy function for placing lots of coins
16 void addCoins(fleoat x, float y, float w) {

17 float step = 16, L = 0, last = w/step;

18 for(i=0; &

19 addForPlayerOnly(new Coin(x+B+i*step,y));
20 }

21 }

22)

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position [x/y] and spanning a width of [w]. We use the [step] value to space out our coins, usir
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
"for the player only", as is obvious from the [addForPlayerOnly(...)] function name. The
result? Why, let's play our updated game and see for ourselves:

Now with shiny coins!

o

2

1. Written instructions

2. Code snippets

3. Expected results

Now with shiny coins!

How do sample programs get written

?

41 sn

ippets,

22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

coin piekup
s MarioPickup {
Loat y) {

super(*Regular coin®, “graphics/assorted/Regular-coin.gif’, 1, 4, X, i,

»

1/ the dragon coin pi

K
class DragonCoin extends MarioPickup {
DragonCoin(float x, float y) {

1,0, %, v e

super("Dragon coin”, "graphics/assorted/Dragon-coin.gi

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n

Coin +)1Or [new DragonCoin(..., ...)] and then add them to our list of pickups, fc

the play

nts above the horizontal platforms

(928, height-236,96);
addCoins (912, height-140,128);
addCoins (1442, height-140,128);

at the start

// add a dragen
addForplayeronly(new DragonCoin(352,height-164));

lots of coins
y, float w) {
st step = 16, 1 = 0, last = w/step;

for(im0; &
addForelayerOnly (new Coin(x+8+irstep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position [x/y) and spanning a width of {w] . We use the [step] value to space out our coins, usir
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
"for the player only", as is obvious from the [addForPlayerOnly(. . .)] function name. The
result? Why, let's play our updated game and see for ourselves:

‘Now with shiny coins!

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
g0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD" , which is the information that you get about your game like score, healt
time remaining, currently equipment, and all that Kind of stuff. We'll be adding that in in the next
tutorial.

Instead, we're going to move on to make this a proper game... it’s time for....

Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher
they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
Mario. Except we don' have to worry about putting in input handling, because we're not going to
control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

class Koopa extends Interactor {

way we did Mario:

setForces(-0.25, DOWN_FORCE);
DAMPENING,

setPosition(x,y);

// hnd we use states.
vold setstates() {
// walking state
State walking = new State("idle", "graphics/enemies/Red-koopa-walking sl
walking.setAnimationspeed(0.12
addstate (walking:

And then we add it just like we add everything else:

s Mariolayer extends Levellayer {

[
MarioLayer(Level owner) (
(.

Koopa koopa = new Koopa(264, helght-178);
addInteractor (koopa) ;

)

‘That's pretty good, but it’s a bit incomplete. Let's try to play this:

A challenger appears.

UNONANANNINANNINANANN

How do sample programs get written?

41 snippets,
source program 22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

1 // the regular coin pickup
s MarioPickup {
loat y) {

2 class Coin exte
Coin(float x,

“graphics/assorted/Reqular-coin.gif”, 1, 4, X, .

super ("Regular col:

»

/7 the dragon coin pickup
0 class DragonCoin extends MarioPickup {

I DragonCoin(float x, float y) {

super("Dragon coin”, "graphics/assorted/Dragon-coin.gif’, 1, 10, x, y/ t

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] OF [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

1 class Mariolayer extends Levellayer (
(]
MarioLayer (Level owner) (
(]

6 // add coints above the horizontal platforms
addCoing (928, height-236,96);
addCoins (912, height-140,128);
addCoins (1442, height-140,128);

1 // add a dragon coin at the start
new 352, hed "

/7 a handy function for placing lots of coins
void addCoins(float x, float y, float w) (
loat step = 16, 1 = 0, last = w/step;
fox(im0; &
addForPlayerOnly (new Coin(x++itatep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position (x/y) and spanning a width of [w) . We use the [step] value to space out our coins, usit
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
“for the player only" as is obvious from the [addForPlayeronly(. ..)] function name. The
result? Why, lets play our updated game and se for ourselves:

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
£0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD", which is the information that you get about your game like score, healt
time remaining, currently equipment, and all that kind of Stuff, We'll be adding that i in the next
tutorial.

Instead, we're going to move on to make this a proper game... it’s time for.....
Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher

they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
ario. Except we don't have to worry about putting in input handling, because we're not going to

control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

| class Koopa extends Interactor {

pretty much the same vay we did Mario:

6 setForces(-0.25, DOWN_FORCE);

setPosition(x,y);

I // hnd we use states.
vold setstates() {
// walking state

State walking = new State("idle", "graphics/enemies/Red-koopa-walking.gi

walking.setAnimationspeed(0.12);

6 addState (valking:
i

And then we add it just like we add everything else:

1 class MarioLayer extends Levellayer {
[
MarioLayer(Level owner) (
]

Koopa koopa = new Koopa(264, helght-178);
addInteractor (koopa) ;

)

‘That's pretty good, but it’s a bit incomplete. Let's try to play this:

Author R

source program

How do sample programs get written?

select

Author

41 snippets,
22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

1 // the regular coin pickup
2 class Coin extends MarioPickup {
Coin(float x, float y) {

super(*Regular coin®, “graphics/assorted/Regular-coin.gif’, 1, 4, X, i,

9 // the dragon coin pickup
10 class DragonCoin extends MarioPickup {
11 DragonCoin(float x, float y) {

super("Dragon coin”, "graphics/assorted/Dragon-coin.gif’, 1, 10, x, y/ t

i)

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] OF [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

1 class MarioLayer extends Levellayer {
2 L)

MarioLayer (Level owner) (
. [

6 7/ add coints above the horizontal platforms
addCoing (928, height-236,96);

8 addCoing (912, height-140,128);

addCoins (1442, height-140,128

1 // add a dragon coin at the

P
S // a handy function for placing lots of coins
6 void addCoins(float x, float y, float w) {
float step = 16, & = 0, last = w/step;
s fox(im0; &
1 addForPlayerOnly (new Coin(x++itatep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position (x/y) and spanning a width of [w) . We use the [step] value to space out our coins, usit
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
“for the player only" as is obvious from the [addForPlayeronly(. ..)] function name. The
result? Why, lets play our updated game and se for ourselves:

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
£0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD", which is the information that you get about your game like score, healt
time remaining, currently equipment, and all that kind of Stuff, We'll be adding that i in the next
tutorial.

Instead, we're going to move on to make this a proper game...i's time for....

Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher
they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
Mario. Except we don't have to worry about putting in input handling, because we're not going to
control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

1 class Koopa extends Interactor {

// we construct a Koopa trooper pretty much the same way we did Mario:
Koopa(float x, float y) {
super ("Koopa Trooper”);
s setstates();
6 setForces(-0.25, DOWN_FORCE);

s setPosition(x,y);

)

11 // And we use states.
void setstates() {
// walking state

State walking = new State("idle", "graphics/enemies/Red-koopa-walking.gi
s walking.setAnimationspeed(0.12);
addstate (walking);

And then we add it just like we add everything else:

1 class Mariolayer extends Levellayer (
2 (e
Mariolayer (Level owner) {

o)

Koopa koopa = new Koopa(264, helght-178);
addInteractor (koopa) ;

L

)

“Tha's pretty good, but it a bit incomplete. Let' try to play this:

A challenger appears.

UNONANANNINANNINANANN

How do sample programs get written?

source program

Author

select

simplify

41 snippets,
22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

1 // the regular coin pickup
2 class Coin extends MarioPickup {
Coin(float x, float y) {

super("Regular coin®, “graphics/assorted/Regular-coin.gif’, 1, 4, X, ¥,

5 // the dragon coin pickup
0 class DragonCoin extends MarioPickup {
1 DragonCoin(float x, float y) {

super("Dragon coin”, "graphics/assorted/Dragon-coin.gif’, 1, 10, x, y/ t

FUE

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] OF [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

class Mariolayer extends Levellayer {

MarioLayer (Level owner) (
[

6 // add coints above the horizontal platforms

7 addCoins (928, height-236,96) ;
addCoing (912, height-140,128);
addCoins (1442, height-140,128

1 // add a dragon coin at the start
12 352, hed, "

»

/7 a handy function for placing lots of coins
16 vold addCoins(fleat x, float y, float w) (

1 float step = 16, & = 0, last = w/step;

t fox(im0; &

addForPlayerOnly (new Coin(x++itatep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position (x/y) and spanning a width of [w) . We use the [step] value to space out our coins, usit
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
“for the player only" as is obvious from the [addForPlayeronly(. ..)] function name. The
result? Why, lets play our updated game and se for ourselves:

Now with shiny coins!

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
£0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD", which is the information that you get about your game like score, healt
time remaining, currently equipment, and all that kind of Stuff, We'll be adding that i in the next
tutorial.

Instead, we're going to move on to make this a proper game... it's time for......
Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher
they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
Mario. Except we don't have to worry about putting in input handling, because we're not going to
control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

1 class Koopa extends Interactor {

2
// we construct a Koopa trooper pretty much the same way we did Mario:
Koopa(float x, float y) {

super ("Koopa Trooper”);

setstates()

setForces

0.25, DOWN_FORCE);

setPosition(x,y);

1/ Bnd we use states.
void setstates() {
/7 walking state

State walking = new State("idle", "graphics/enemies/Red-koopa-walking.gi
15 walking.setAnimationspeed(0.12);
addstate (walking);

And then we add it just like we add everything else:

class Mariolayer extends Levellayer {

MarioLayer(Level owner) (

1
2
4 (S

Koopa koopa = new Koopa(264, helght-178);
7 addInteractor (koopa) ;

¢

“Tha's pretty good, but it a bit incomplete. Let' try to play this:

A challenger appears.

UNONANANNINANNINANANN

How do sample programs get written?

source program

Author

select

simplify

sequence

41 snippets,
22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

1 // the regular coin pickup
2 class Coin extends MarioPickup {
Coin(float x, float y) {

super("Regular coin®, “graphics/assorted/Regular-coin.gif’, 1, 4, X, ¥,

5 // the dragon coin pickup
10 class DragonCoin extends MarioPickup {
11 DragonCoin(float x, float y) {

super("Dragon coin”, "graphics/assorted/Dragon-coin.gif’, 1, 10, x, y/ t

FUE

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] OF [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

class Mariolayer extends Levellayer {

1
2
3 MarioLayer(Level owner) {
. (]
6 7/ add coints above the horizontal platforms
7 addCoins (928, height-236,96) ;

addCoing (912, height-140,128);

addCoins (1442, height-140,128

// add a dragon coin at the start
352, het "

»

/7 a handy function for placing lots of coins
16 vold addCoins(fleat x, float y, float w) (

7 float step = 16, & = 0, last = w/step;
fox(im0; &

addForPlayerOnly (new Coin(x++itatep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position (x/y) and spanning a width of [w) . We use the [step] value to space out our coins, usit
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
“for the player only" as is obvious from the [addForPlayeronly(. ..)] function name. The
result? Why, lets play our updated game and se for ourselves:

Now with shiny coins!

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
£0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD", which is the information that you get about your game like score, healt
time remaining, currently equipment, and all that kind of Stuff, We'll be adding that i in the next
tutorial.

Instead, we're going to move on to make this a proper game... it's time for......
Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher
they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
Mario. Except we don't have to worry about putting in input handling, because we're not going to
control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

1 class Koopa extends Interactor {

// we construct a Koopa trooper pretty much the same way we did Mario:
Koopa(float x, float y) {

super ("Koopa Trooper”);

setstates()

setForces

0.25, DOWN_FORCE);

setPosition(x,y);

1/ Bnd we use states.
void setstates() {
/7 walking state

State walking = new State("idle", "graphics/enemies/Red-koopa-walking.gi
15 walking.setAnimationspeed(0.12);
6 addstate (walking);
i

)

And then we add it just like we add everything else:

1 class MarioLayer extends Levellayer {

3 MarioLayer(Level owner) (
. o)

6 Koopa koopa = new Koopa(264, helght-178);
7 addInteractor (koopa) ;

“Tha's pretty good, but it a bit incomplete. Let' try to play this:

‘A challenger appears,

UNONANANNINANNINANANN

How do sample programs get written?

source program

select

simplify

sequence

supplement

41 snippets,
22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

1 // the regular coin pickup
2 class Coin extends MarioPickup {
Coin(float x, float y) {

super("Regular coin®, “graphics/assorted/Regular-coin.gif’, 1, 4, X, ¥,

5 // the dragon coin pickup
10 class DragonCoin extends MarioPickup {
11 DragonCoin(float x, float y) {

super("Dragon coin”, "graphics/assorted/Dragon-coin.gif’, 1, 10, x, y/ t

FUE

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] OF [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

class Mariolayer extends Levellayer {

1
2
3 MarioLayer(Level owner) {
. [

7/ add coints above the horizontal platforms
7 addCoins (928, height-236,96) ;
addCoing (912, height-140,128);
addCoins (1442, height-140,128

1 // add a dragon coin at the start
352, het "

»

15 // a handy function for placing lots of coins
16 vold addCoins(fleat x, float y, float w) (

7 float step = 16, & = 0, last = w/step;

18 fox(im0; &

19 addForPlayerOnly (new Coin(x++itatep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position (x/y) and spanning a width of [w) . We use the [step] value to space out our coins, usit
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
“for the player only" as is obvious from the [addForPlayeronly(. ..)] function name. The
result? Why, lets play our updated game and se for ourselves:

Now with shiny coins!

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
£0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD", which is the information that you get about your game like score, healt
time remaining, currently equipment, and all that kind of Stuff, We'll be adding that i in the next
tutorial.

Instead, we're going to move on to make this a proper game...i's time for....

Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher
they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
Mario. Except we don't have to worry about putting in input handling, because we're not going to
control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

1 class Koopa extends Interactor {

// we construct a Koopa trooper pretty much the same way we did Mario:
Koopa(float x, float y) {
super ("Koopa Trooper”);

DOWN_FORCE) ;

s setPosition(x,y);

1/ Bnd we use states.
void setstates() {
// walking state

State walking = new State("idle", "graphics/enemies/Red-koopa-walking.gi
15 walking.setAnimationspeed(0.12);
6 addstate (walking);

And then we add it just like we add everything else:

class Mariolayer extends Levellayer {

1

Mariolayer (Level owner) {
o)

6 Koopa koopa = new Koopa(264, helght-178);
7 addInteractor (koopa) ;

“Tha's pretty good, but it a bit incomplete. Let' try to play this:

‘A challenger appears,

UNONANANNINANNINANANN

How do sample programs get written?

source program

Author

select

simplify

sequence

supplement

41 snippets,
22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

1 // the regular coin pickup
2 class Coin extends MarioPickup {
Coin(float x, float y) {

super("Regular coin®, “graphics/assorted/Regular-coin.gif’, 1, 4, X, ¥,

5 // the dragon coin pickup
10 class DragonCoin extends MarioPickup {
11 DragonCoin(float x, float y) {

super("Dragon coin”, "graphics/assorted/Dragon-coin.gif’, 1, 10, x, y/ t

FUE

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] OF [new DragonCoin(...,...)] and then add them to our list of pickups, fc
the player only:

class Mariolayer extends Levellayer {

1
2
3 MarioLayer(Level owner) {
. (]
6 7/ add coints above the horizontal platforms
7 addCoins (928, height-236,96) ;

addCoing (912, height-140,128);

addCoins (1442, height-140,128

// add a dragon coin at the start
352, het "

»

/7 a handy function for placing lots of coins
16 vold addCoins(fleat x, float y, float w) (

7 float step = 16, & = 0, last = w/step;
fox(im0; &

addForPlayerOnly (new Coin(x++itatep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position (x/y) and spanning a width of [w) . We use the [step] value to space out our coins, usit
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
“for the player only" as is obvious from the [addForPlayeronly(. ..)] function name. The
result? Why, lets play our updated game and se for ourselves:

Now with shiny coins!

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
£0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD", which is the information that you get about your game like score, healt
time remaining, currently equipment, and all that kind of Stuff, We'll be adding that i in the next
tutorial.

Instead, we're going to move on to make this a proper game... it's time for......
Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher
they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
Mario. Except we don't have to worry about putting in input handling, because we're not going to
control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

1 class Koopa extends Interactor {

// we construct a Koopa trooper pretty much the same way we did Mario:
Koopa(float x, float y) {

super ("Koopa Trooper”);

setstates()

setForces

0.25, DOWN_FORCE);

setPosition(x,y);

1/ Bnd we use states.
void setstates() {
/7 walking state

State walking = new State("idle", "graphics/enemies/Red-koopa-walking.gi
15 walking.setAnimationspeed(0.12);
6 addstate (walking);
i

)

And then we add it just like we add everything else:

1 class MarioLayer extends Levellayer {

3 MarioLayer(Level owner) (
. o)

6 Koopa koopa = new Koopa(264, helght-178);
7 addInteractor (koopa) ;

“Tha's pretty good, but it a bit incomplete. Let' try to play this:

‘A challenger appears,

UNONANANNINANNINANANN

source program

Author

select

This

simplify

sequence

supplement

1S aln

Iterative

not linear) process.

How do sample programs get written?

41 sn

ippets,

22 outputs

So, let's write our coin pickups. They're pretty straightforward, so here goes:

1 // the regular coin pickup
2 class Coin extends MarioPickup {
3 coln(fleat x, float y) {

super(*Regular coin®, “graphics/assorted/Regular-coln.gif’, 1, 4, X,
5o
6y

9 // the dragon coin pickup
10 class DragonCoin extends MarioPickup {
11 DragonCoin(float x, float y) {

super("Dragon coin”, "graphics/assorted/Dragon-coin.gif’, 1, 10, X, ¥/

i)

“That's it, thats all we have to define. Now if we want to use them in our game, we simply make [n
Coin(...,...)] OF [new DragonCoin(..,...)] and then add them to our list of pickups, f
the player only:

1 class MarioLayer extends Levellayer {
2 el

! MarioLayer(Level owner) {

(]

7/ add coints above the horizontal platforms
addCoing (928, height-236,96);
8 addCoing (912, height-140,128);
addCoins (1442, height-140,128

1 // add a dragon coin at the start
352, hed "

P
/7 a handy function for placing lots of coins
6 void addCoins(float x, float y, float w) {
float step = 16, & = 0, last = w/step;
s fox(im0; &
19 addForPlayerOnly (new Coin(x++itatep,y));

The [addCoins] function is a convenient function that lets us add a string of coins starting at
position (x/y) and spanning a width of [w) . We use the [step] value to space out our coins, usit
16 pixels as distance from one coin's center to the next coin's center, and then we start adding coins
“for the player only" as is obvious from the [addForPlayeronly(. ..)] function name. The
result? Why, lets play our updated game and se for ourselves:

time remaining, currently equipment, and all that Kind of stuff. We'll be adding that in in the next
tutorial.

Instead, we're going to move on to make this a proper game... it's time for......
Enemies!

Yes, it's time to add enemies to our game. Just running around collection coins gets a lot more
challenging if you'e trying to not hit an enemy at the same time. So lets add the old Mario favouri
the Koopa Trooper.

Koopa troopers are very much like Mario: They have states and need to switch between them wher
they do things, so probably not surprisingly, defining a Koopa trooper is very similar to defining
Mario. Except we don't have to worry about putting in input handling, because we're not going to

As you can see, we can pick up coins by running into them. If we want, we can make Mario's score
£0 up whenever he picks up a coin, but we're going to do that later because it requires working witl
something called a "HUD", which is the information that you get about your game like score, healt

control. (Although, wouldn't it be cool to play as the enemy? Maybe we'll do that in a next tutorial!

1 class Koopa extends Interactor {

// we construct a Koopa trooper pretty much the same way we did Mario:
i Koopa(fleat x, fleat y) {

. super ("Koopa Trooper”);

setstates();

6 setForces(-0.25, DOWN_FORCE);

s setPosition(x,y);

)

11 // And we use states.
12 vold setstates() {
3 // walking state

State walking = new State("idle", "graphics/enemies/Red-koopa-walking|
s walking.setAnimationspeed(0.12);
6 addstate (walking);
i

And then we add it just like we add everything else:

1 class Mariolayer extends Levellayer (
Mariolayer (Level owner) {
o)

Koopa koopa = new Koopa(264, helght-178);
addInteractor (koopa) ;

L

)

“Tha's pretty good, but it a bit incomplete. Let' try to play this:

A challenger appears.

UNONANANNINANNINANANN

Program distillation

Sample
Existing

Program
Progra m\
o Snippet
42‘

O

A I
_ Tutorial

Program distillation

Sample
Existing Program
Progra m\
< Snippet
A =
: Tutorial

Author

Program distillation

Tool
Sample
Existing Program
Progra m\
= Snippet
A S
: Tutorial

Author

Thesis

Authors can transform existing programs
into sample programs more efhciently and
flexibly when aided by interactive tools
tor selecting, simplifying, supplementing,

and sequencing code.

The Essence of Distillation Tools

< R
Distillation
Snippet
Author TOOI
gz
Tutorial
Existing - J Sample

Program °rogram

The Essence of Distillation Tools

Snippet

9,

IS

. N
a Interactions
[™ .
select) simplify
Author [supplement] [sequence j
Existing - ~

Program

Tutorial

Sample
Program

The Essence of Distillation Tools

Snippet

9,

IS

.)
a Interactions
[selectj simplify
Author (supplement j [sequencej
e Program Analysis
Existing - ~

Program

Tutorial

Sample
Program

The Essence of Distillation Tools

Efficient, Flexible Authoring

Snippet

9,

IS

ﬁf b | :
a Interactions
[selectj simplify
Author [supplement] [seguence]
6 Program Analysis
Existing - ~

Program

Tutorial

Sample
Program

This Talk

CodeScoop [CHI 18]

snippets (select) simplify

Toril [cHI 201

tutorials (supplement) (sequence)

|

Gathering tools [cHI '19]

.III snippets tutorials (select) (supplement)

This Talk

CodeScoop [CHI 18]

snippets (select) simplify

Toril [cHI 201

tutorials (supplement) (sequence)

i

Gathering tools [cHI '19]

.III snippets tutorials (select) (supplement)

How can tools make it easier for programmers to share
snippets from their own code?

Detailed, personal code

Concise, selt-contained snippet

} _ A —— [Em
8 —— ’ ’.“

V&V ———

Post online, share locally,

Formative Study

12 programmers creating samples

from their own programs.

Untitled.py —

n 3 (=] [4]
Language Kun Settings...

Untitied. py

viaws v

.... y » . . —

LIS ITER

Sample Editor= =~

unutiea.py — v

n3
Language

Unlitle

viaws v

Untitled.py —

T S ey Existing Program

Unltitie

n3

viaws v

3 (=]
Language Stop Kun Settings...

Unlitle

Testing Environment

LIS ITER

Browser

Untitled.py —
n3
Language

Unlitle

viaws v

Untitled.py —

n 3 (=] [4]
Language Kun Settings...

Untitied. py

viaws v

—_— e - - —— —_—
..........

-4
== =7

- a5 s 7

.

\

Transcription errors =

Untitled.py —
n3

Language

Unltitie

viaws v

Transcription errors

Untitled.py —

n3
Language

Unltitie

viaws v

—_— e —_—— —_—— —— —
........

I | _,.-.
- -
—

Transcription errors """
Forgotten code

Untitled.py — =

n 3 o) (> [=]

Language Run Stop

Untitied.py

viaws v

...and time-consuming removal of dead code

—_— e —_—— —_—— —— —
........

I | _,.-.
- -
—

x %) X X
Q
Transcription errors "

Forgotten code

Untitled.py — = v

n 3 o) (> [=]

Language Run Stop

Untitied.py

viaws v

Q. How can tools make it easier for programmers to share
snippets from their own code?

A distillation tool should:

 Help authors select subsets of code
quickly and completely

 Help make simplifications without
introducing errors

33
34
35

36
37

38
39
40
41

42
43

44
45
46
47

48
49

50
51

int rowNumber = 0;
while (finished == false) {

int rowCount = cursor.rowCount():
for (int i = 0; i < Math.min(rowCount, maxBooks); ++i) <

cursor. fetchone():

int id = cursor.getInt(COLUMN_INDEX_ID);
String title = cursor.ge{String(COLUMN_INDEX_TITLE);

int year = cursor.getInt(COLUMN_INDEX_YEAR);
int num_pages = cursor.getInt(COLUMN_INDEX_NUM_PAGES);
Book book = new Book(id, title, year, num _pages);

if (title '= null) {
titles.add(title):

+
if (id '= -1) {

— — —_— = pr— —_— — F = - pr—

33

34 1int rowNumber = 0;
35 while (finished == false) {

36

37 int rowCount = cursor.rowCount();

38

39 for (int 1 = 0; i < Math.min(rowCount, maxBooks); ++i) { «

40 Undo
41 cursor.fetchone(); I

42

4 St ring (COLUMN_INDEX_TITLE) ;

4 (1) Author selects pattern (COLUMN_INDEX_YEAR) ; Run

4" jetInt (COLUMN _INDEX NUM PAGES);

A title, year, num_pages);

1 (0

4

4 Reset

int 1d = cursor.

(1) Author selects pattern

(2) Editor creates snippet,

public class ExtractedExample {
public static void main(String]|

int id = cursor.getInt(COLUM

int 1d = cursor.

(1) Author selects pattern

(2) Editor creates snippet,
(3) Flags errors,

public class ExtractedExample {
public static void main(String]|

int id = cursor.getInt(COLUM

21 public class ExtractedExample {

23 Cursor cursor = database. public static void main(Stringl|

int 1d = cursor.getInt(COLUM

Undo

(1) Author selects pattern -

(2) Editor creates snippet,

(3) Flags errors,

(4) Suggests code fixes, S
Reset

JExample {

int id = c nain(String[] args) {

2tInt(0);
yok(id, title, year, num_pages);

Book book

(1) Author selects pattern -
(2) Editor creates snippet,

(3) Flags errors,

(4) Suggests code fixes, 4,
(5) Suggests simplitications, Reset

JExample {

int id = ¢ nain(String[] args) {

2tInt(0); e
yok(id, title, year, B3@);

Add code

Book book
Set value

250

1
2) Editor creates snippet,

3
4) Suggests code fixes,

Author selects pattern

(
(
(
(
(

)
)
) Flags errors,
)
)

5) Suggests simplifications,

50 import org.acme.database.Databas

37 import org.acme.database.Cursor;
38 import org.acme.database.Book;
39

40 public class ExtractedExample {
41 cursor.

42 int 1d = public static void main(String

Database database = new Data

Cursor cursor = database.cu
cursor.execute("SELECT id, t
cursor. fetchone();

int id = cursor.getInt(0);
Book book = new Book(id, "Dc

1
2) Editor creates snippet,
3
4
5
6

Author selects pattern

Suggests code fixes,
Suggests simplifications,
And makes automatic fixes.

(
(
(
(
(
(

)
)
) Flags errors,
)
)
) A

cursor.fetchone();

A row of data is fetched from the database.

cursor. fetChOne() . A row of data is fetched from the database.

This is data for a book.

Book book = new Book(id,

M for (intis D; i < Matumin(rowCount, mam-u
* turmhone() -

 intid= cursor.getmt(cm_mﬂ_ﬂl: 9
Stringy 1é & cus sor.gei HringlCOLUMN_ tN»: 1]

Program Slicing

- . - N
N e — F het

Program Slicing

- TPy e - A
<+
- aer B '"%#» - -

e

TPy A A
- gew ;-}?,% S

. ° .
= TRy~ - A

e aer) E WY,

"'%"""‘"
N e BB -y —

- ~

Y a

¢ & LD e s RIEEIS,
P

Program Slicing Program Scooping

- TPy e~ - A
- e ;-)F,"*‘ - K

e

'myusn o
N e ;-)g% — -

L

2 e : >3 % ~
= TRy~
" - A
<N

N ser DB L -

Y a R N
S e 2V ER S

o
P . -
" I . e, Ll
e : S %
v N TP~ R Ll 2 o LT ES —eas s 3B, ~
- = sl vy ~ S L o3~
¥ -~

0 2, e s 2BV -«

S _— X P

Program Slicing Program Scooping

- TPy e A A
N e g)ﬁ* -«

e

e Aol - A
N e ;-)g% — -

L

2 e : >3 % ~
= TRy~
— - A
<N

Y s -

ad - S % N
P e S S P
¥ -~

0 2, RN s -

Program Slicing Program Scooping

- TPy e A A
N e g)ﬁ* -«

e

e Aol - A
N e ;-)g% — -

L

2 e : >3 % ~
= TRy~
— - A
<N

Y s -

ad - S % N
P e S S P
¥ -~

0 2, RN s -

Program Slicing Program Scooping

e Aol A A
N e ;-)F,"*‘ -« -

e

e Aol - A
N e ;-)g% — -

L

2 e : >3 % ~
= TRy~
— - A
<N

Y s -

Y a R N
e aer 2B Y R

- 4 > - N S S aer 2V £
- -~
~
v 2 o e *)ﬁ,ﬁ‘ -~ o« o’

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
S|
52
23
54
55
56
S
58

int rowNumber = 0;
while (finished == false) {

int rowCount = cursor.rowCount():

for (int i = @; i < Math.min(rowCount, maxBooks); ++i) {

cursor.fetchone();

int id = cursor.getInt(COLUMN_INDEX ID);

String title = cursor.getString(COLUMN_INDEX_TITLE);
int year = cursor.getInt(COLUMN_INDEX YEAR);

int num_pages = cursor.getInt(COLUMN_INDEX_NUM_PAGES);
Book book = new Book(id, title, year, num_pages);

if (title !'= null) {
titles.add(title);
}
if (id '= -1) {
boolean bestseller = isBestseller(book.getId());
if (bestseller) {
booklist.hasBestseller = bestseller;

if (DEBUG == true) {

~ ~ on s m s de | o HIE b b o~ o~ - il . ~ i 1

34 public class ExtractedExample {

35

36 --_ public static void main(String[] args) {

37 k

38 String title = cursor.getString(COLUMN_INDE \ ¥

39 Static Dataflow

40 Y . «

41 AnalySIS Giidia

42 ‘

43 String title = cursor.

44

45

46 ‘ Run

47 ‘

48 'S
w/

s ‘ Reset

ol’

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

public class ExtractedExample {

Cursor cursor database.

public static void main(String[] args) {

String title = cursor.getString(COLUMN_INDE

String title cursor.

Reset

Show
Help

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Cursor cursor database.

String title cursor.

public class ExtractedExample {

public static void main(String[] args) {

Cursor cursor = database.cursor():
String title = cursor.getString(COLUMN_IND

} Include 'try' structure? Acceg Reject

Reset

Show
Help

public class ExtractedExample {

Cursor cursor = database. ()3 public static void main(String[] args) {

Cursor cursor = database.cursor():

33
34
35
36
37
38
39
40
41
42
43
44
45
46

Line 42

cursor.

String title cursor.

try {
try + cursor.execute(QUERY); «
cursor. fetchone(): Undo
cursor. (QUERY) ; String title = @gr§gﬁ.getString(COLUMN_I
} catch (Connecti . ;
tanyo
! O you wan
these uses of .
cursor ? Run
Line 32
&
Line 37 Reset

Show
Help

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

ExtractedExample {
tic void main(String[] args) {

ursor = database.cursor():

.execute(QUERY):
. fetchone():

Cursor cursor database. title cursor.getString(m);

(ConnectionException excep —_—
Add code Set value

try 4

cursor. (QUERY) :

Reset

Show
Help

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Database database
Cursor cursor

new
database.

try 1

cursor. (QUERY) :

public class ExtractedExample {

public static void main(String[] args) {

Cursor cursor = ﬁatabasé.cursor();

try { |
cursor.execute) Addcode year,

cursor. fetchon| l

String title = % ltString(l);
} catch (ConnectioWAception exception) {

}

Reset

Show
Help

Scooping Summary

First selections

Scooping Summary

Code fixups

First selections

Scooping Summary

Optional control

Code fixups

First selections

Scooping Summary

Variable substitutions

//
/ /
//
/

Optional control

Code fixups

First selections

Program Analysis

Selecting Adding in Simplitying Automatic
Code Forgotten Lines the Code Fixes

Existing Working
Program Snippet

Program Analysis

Selecting Adding in Simplitying Automatic
Code Forgotten Lines the Code Fixes

Existing Working
Program Snippet

Static Dataflow
Analysis

Program Analysis

Selecting Adding in Simplitying Automatic
Code Forgotten Lines the Code Fixes

Existing Working
Program Snippet

Static Dataflow Execution
Analysis Trace

Program Analysis

Selecting Adding in Simplitying Automatic
Code Forgotten Lines the Code Fixes

Existing Working
Program Snippet

Static Dataflow Execution
Analysis Trace

Reflections

Program Analysis

Selecting Adding in Simplitying Automatic
Code Forgotten Lines the Code Fixes

Existing Working
Program Snippet

Static Dataflow Execution ,
Reflections

Analysis Trace

Parse Tree Walkers

Evaluating CodeScoop

Q1. Does CodeScoop support efficient
extraction of snippets?

Q2. Does CodeScoop provide flexible
authoring choices?

A Pilot Study about Snippet Extraction

Participants: N = 19 undergraduate student programmers

Main Task: Create snippets from existing code

Measurements: Usability of CodeScoop vs. baseline text editor, Preterence for
their scoop vs. an automatic slice, time to extract a snippet, ...

Qualitative Feedback: Survey and Interview

Was CodeScoop, vs. the baseline...?

Faster to use? Yes. 5.8 min vs 2.6 min p < .001
Easier to use? Yes. A = 3 (7-pt scale) < .01
More enjoyable? Yes. A=3" < .01
Producing more Yes. Aoot - o1

satistfying samples?

"[CodeScoop's features] made creating an example a
lot easier because | just had to look at the relevant
code and see if | needed it or not instead of having to
manually add them in."

CodeScoop provided a median of...
12 automatic corrections

5 suggestions of optional code

2 suggestions of error fixes

A simplification that shortens the snippet

For Task 3, participants made an important simplification:

LITERALS]

Slice (101 lines) Scoop (median = 36 lines)

Flexibility: Extracting snippets in different ways

Variable
COLUMN _INDEX ID

COLUMN_INDEX_NUM_PAGES
COLUMN_INDEX_TITLE

COLUMN_INDEX_ YEAR
num_pages

QUERY

Add Insert
Code Literal

56 8

517 618

lask 1

5 6 1215

Add Insert
Variable Code Literal
argo
pricelnt
query - 4 81619 7o .
argl 14
destination 11
messageHtml 11
password 13 11 14
sslFactoryClass 2 n‘l'l 14
username 2 13 11 14

lask 3

Flexibility: Extracting snippets in different ways

int COLUMN_INDEX_TITLE = 1;

try { { - - ” -

if cursor.rowCount() > 0) {

String title = cursor.getString(COLUMN_INDEX TITLE);
} catch (ConnectionException exception) { - i

}j Book book = new Book(title,);

} }
}

Choice: Error checking through
exceptions and postconditions. Choice: Column variable names,
saving results to Book object.

Takeaways from Study

Q1. Scooping was efficient compared to
using the baseline text editor.

Q2. Scooping provided flexibility in
influencing the appearance of snippets.

This Talk

CodeScoop [CHI 18]

snippets (select) simplify

Torii [cHI 201

tutorials (supplement) (sequence)

|

Gathering tools [cHI '19]

.III snippets tutorials (select) (supplement)

wn in the diagram on the

hows

call(Pid, Msg) ->
Ref = erlang:monitor(process, Pid),
Pid ! {sync, self(), Ref, Msg},

e {Ref, Reply} —>

- ' c erlang:demonitor(Ref, [flush]),
regularizatior or L2 g It Reply;
etc.) or collec » da > b s {'DOWN’, Ref, process, Pid, Reason} ->
e validation ¢ e re 3 acy erlang:error(Reason)

5000 ->
erlang:error(timeout)

We can now provide a new function for asynchronous calls. The function

cast(Pid, Msg) ->
Pid ! {async, Msg},
ok.
Ratio of weights:updates
Vith this done, the loop can now look like this
The last quantity you might want to track is the ratio of the update magnitudes to the value magnitudes. Note.
updates, not the raw gradients (e.g. in vanilla sgd this would be the gradient multiplied by the learning rate). You loop(Module, State) ->
might want to evaluate and track this ratio for every set of parameters independently. A rough heuristic is that this {async, Msg}
ratio should be somewhere around 1e-3. If it is lower than this then the leaming rate might be too low. If it is higher e '“;;‘é"Og:}e-H:;fu}f? handle_cast(Msg, State));
then the learning rate is likely too high. Here is a specific example "loop(Module, Module:handle_call(Msg, Pid, Ref, State))
And then you could also add specif ts to har
. param_scale = np.linalg.norm(W.ravel()) the sync/async ¢ re sent € » to hav
update = -learning_rate*dw your debug functions and other stu ode r ding in the
update_scale = np.linalg.norm(update.ravel())
W += update One disappointing t the loop above is that the abstr
prist update_scale / param_scale eaking. The progra who will use my_server will st 3
about refere en sending synchronous »s and r
them. That the abstraction useless. To t st
Instead of tracking the min or the max, some people prefer to compute and track the norm of the gradients and derstand all the boring det Her x for it

their updates instead. These metrics are usually correlated and often give approximately the same results
loop(Module, State)

P ; {async, Msg} ->
Activation / Gradient dlstnbunonsperlayer 1'3cn(Modu1e, Module:handle_cast(Msg, State));
{sync, Pid, Ref, Msg} ->
An incorrect initialization can slow down or even completely stall the learing process. Luckily, this issue can be loop(Module, Module:handle_call(Msg, {Pid, Ref}, State))

diagnosed relatively easily. One way to do so is to plot activation/gradient histograms for all layers of the network :

Intuitively, it is not a good sign to see any strange distributions - e.g. with tanh neurons we would like to see a By putting both variables Pid and Ref ina t , they can be pas i as a single argument to the

distribution of neuron activations between the full range of [-1,1), instead of seeing all neurons outputting zero, or other function as a variable with a name like From se S to know anything
about the variable's innards. Instead, we'll provide a function to ¢ should

all neurons being completely saturated at either -1 or 1
understand what From contains

reply({Pid, Ref}, Reply)
Firstdayer Visualizations AV S

Lastly, when one is working with image pixels it can be helpful and satisfying to plot the first-layer features visually: What is left to do is specify the starter functions (start, start link and init) that pass around the

module names and whatnot. Once they're added, the module should look like this

module(my_server)
export([start/2, start_link/2, call/2, cast/2, reply/2])

%%% Public API
start(Module, InitialState) ->
spawn(fun() -> init(Module, InitialState)

° ° 2 3 = W L S
L —1 -t - et BN - 4 — start_link(Module, InitialState) ->
r I tt e n I ﬂ m a n y a n 9 l I a 9 e S 7 ks] 8 o : : Spawn_Link(fun() > init(Module, InitialState)

-2px along the Z axis the correction scale

[]
"
about many topics. -1

Tensor

I: Calling Keras layers on TensorFlow tensors

Let's start with a simple example: MNIST digits classification. We will build a TensorFlow digits classifier using a stack of Keras Dense layers (fully-connected
layers).

0 We should start by creating a TensorFlow session and registering it with Keras. This means that Keras will use the session we registered to initialize all
Try it depth corrected

variables that it creates internally.

tensorflow as tf
sess - tf.Session()

[]
a ‘ | l I | O r I a W a S a I I a y 2 e ContrOlling layer Speed Now er'er started with our MNIST model. We can start building a classifier exactly as you would do in TensorFlow:

Layer speed is controlled by a combination of the perspective and the Z translation

ing = tf placeholder(tf. f1 ape - (Non:

values. Elements with negative Z values will scroll slower than those with a positive We can then use Keras layers to speed up the model definition process:
value. The further the value is from @ the more pronounced the parallax effect (i.e. keras. tayers bense

translatez(-1@px) will scroll slower than translatez(-1px)).

x = Dense » activation-'

‘Or tl Ie presel Ice O‘ 23 Parallax sections

labels tf.placeholder(tf. float32, shape-(None,)

keras.obj ves categorical_crossentropy
loss - tf reduce_sean(categorical_crossentropy(labels, preds))

The previous examples demonstrated the basic techniques using very simple
Let's train the model with a TensorFlow optimizer

content but most parallax sites break the page into distinct sections where different
effects can be applied. Here's how to do that. tensorflow. examples . tutor ials. mist input_data

mnist_data - input_data. read_data_sets('MNIST data', one_hot True)

[
train_step - tf.train.GradientDescentOptimizer() .minimize(loss)
init_op - tf.global_variables_initializer()
[] Firstly, we need a parallax__group element to group our layers together: sess. rn(init_op)

with sess.as_default():

)
batchlo],
labels: batch(1]})

class="parallax" We can now evaluate the model:

clas parallax__group"

metrics categorical_accuracy accuracy
class="parallax__layer parallax__layer—back"

Structure and dependencies in tutorials

Fragments 83%

Duplicated Code 59%
Rewritten Code 48%

Structure and dependencies in tutorials

Fragments 83%

Duplicated Code 59%
Rewritten Code 48%

Generated Output 67%

Console Output 33%
Images of Output 32%
Live Demo... 15%

and Editable Code 5%

Interviews with 12
accomplished authors of
programming tutorials.

Vil
codeburst.lo

Tutorials Playground Articles Collective CSS Reference

E a C h a u t h O r h a d W ri tte n / & Build the internet on DigitalOcean

of tutorials.

Sequencing code — parallel views of the code

source program

Sequencing code — parallel views of the code

¥

source program tutorial

Sequencing code — parallel views of the code

¥

source program tutorial

duplicated

Sequencing code — parallel views of the code

duplicated

generates
output

source program tutorial

Sequencing code — parallel views of the code

depends on
languages and APIs
(which change)

duplicated

generates
output

source program tutorial

How to keep parallel views of code consistent

Proactive approaches: Starting with a reference

implementation; Using version control.

Corrective approaches: Manually following one's own
tutorial and checking the end result; Regenerating
outputs as code changes.

Simultaneous support of sequencing and supplementing

source program tutorial

Simultaneous support of sequencing and supplementing

source program tutorial

Simultaneous support of sequencing and supplementing

source program tutorial

Simultaneous support of sequencing and supplementing

source program tutorial

Simultaneous support of sequencing and supplementing

Simultaneous support of sequencing and supplementing

Simultaneous support of sequencing and supplementing

Simultaneous support of sequencing and supplementing

Simultaneous support of sequencing and supplementing

@ objects.py X th @ - Tutorial Editor >

@ ‘Jtljjem;w;\;mexample — class| T Torii ['ﬁ-{,ﬁoo TEXT J <> ADD SNIPPET x> UNDO O e :
2| class Rectangle:
3
4 def _init_ (self, w, h):
5 self.w = w
6 self.h = h
7 self.description = "This shape has not been described yet"
8 self.author = "Nobody has claimed to make this shape yet"
9
10 def area(self): .
11 return self.w x self.h
12
13 def set_description(self, text):
14 self.description = text
15
16 def set_scale(self, scale): I
17 self.w = self.w % scale =
18 self.h = self.h * scale —_—
10 oI
20 :;.;.“.::""‘"“'
21| class Square(Rectangle): ‘ll'--'--‘
22 def init (self, w): I
23 self.w = w
24 self.h = w
25
26

271 rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120)

30

31| print("The width of the rectangle is: " + str(rectangle.w))

32

33 print("And its description is: " + str(rectangle.description))
34

35| # finding the area of your rectangle:

36 print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

/LA

ster* © Python3.6.464-bit Q0 AO0 Ln1, Col 24 Spaces:4 UTF-8 LF Python @ A

@ objects.py X 0w @O - Tutorial Editor

@ ._..tlaject;,-yA;‘..example — classl T Torii [TT{‘ﬁDD TEXT] <> ADD SNIPPET ™~ UNDO O w9 :
2| class Rectangle:
3
4 def _init_ (self, w, h):
5 self.w = w
6 self.h = h
7 self.description = "This shape has not been described yet"
8 self.author = "Nobody has claimed to make this shape yet"
9
10 def area(self): :
11 return self.w x self.h
12
13 def set_description(self, text):
14 self.description = text
15
16 def set_scale(self, scale): i
17 self.w = self.w x scale
18 self.h = self.h * scale
19
20
21| class Square(Rectangle):
22 def init (self, w): I
23 self.w = w
24 self.h = w
25
26

27 rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120)

30

31| print("The width of the rectangle is: " + str(rectangle.w))

32

33 print("And its description is: " + str(rectangle.description))
34

35| # finding the area of your rectangle:

36 print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

/LA

ster* © Python3.6.464-bit Q0 AO0 Ln1,Col24 Spaces:4 UTF-8 LF Python @ A

@ objects.py X 0w o - Tutorial Editor >

@ objects.py > ...
1 # An example of a class| 1
2| class Rectangle:

3 rich text

Torii [TT@DD TEXT] <> ADD SNIPPET | M~ UNDO O B

4 def __init_ (self, w, h):

5 self.w=w

6 self.h = h

7 self.description = "This shape has not been described yet"

8 self.author = "Nobody has claimed to make this shape yet"

9

10 def area(self): =
11 return self.w x self.h

12

13 def set _description(self, text):

14 self.description = text

15

16 def set scale(self, scale): 1
17 self.w = self.w x scale

18 self.h = self.h * scale

19

20

21| class Square(Rectangle):

22 def __init_ (self, w): I
23 self.w = w

24 self.h = w

25

26

27| rectangle = Rectangle(90, 45)
28| 1long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120)

30

31 print("The width of the rectangle is: " + str(rectangle.w))

32

33 print("And its description is: " + str(rectangle.description))
34

35| # finding the area of your rectangle:

36 print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

/LA

ster* © Python36.464-bit QO0AO Ln1, Col 24 Spaces:4 UTF-8 LF Python @ A

@ objects.py > Tutorial Editor X 1

@ objects.py > ..

1 [F An example of & EIEES T Torii Tr ADD TEXT <> ADD SNIPPET ™~ UNDO O e :
2| class Rectangle: :
. rich text
4 def init (self, w, h): Wiite Preiew H B I S & M ¢+ m = E =
5 self.w=w - > s y
6 self.h = h
7 self.description = "This shape has not been described yet" So far in Python, we've used a couple of types of organized data structures: lists,
8 self.author = "Nobody has claimed to make this shape yet" sets, and dictionaries. Each of these data structures have their own properties---
9 like length, or keys. They also have their own methods, like the ability to "append” to
10 def area(self): ’ i. - :
a list or, or get the index of an element from the list.
11 return self.w % self.h
L L What if we want to define our own data structures, with useful, common properties
13 def set_description(self, text): , ,))
14 self.description = text and data structures? Like, for instance, maybe we wanted to refer to a "shape
15 object that has an area and a perimeter in a program where we draw shapes on a
16 def set scale(self, scale): I screen.
17 self.w = self.w * scale
18 self.h = self.h * scale Wouldn't it be cool if we could just create an object with all of these built-in
19 properties and methods with a call that looked like this?
0 Q@
21| class Square(Rectangle):
22 def init_ (self, w): I
23 self.w = w "
24 self.h = w Snlppets
25
26

271 rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120)

30

31| print("The width of the rectangle is: " + str(rectangle.w))

32

33 print("And its description is: " + str(rectangle.description))
34

35| # finding the area of your rectangle:

36 print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

LA

ster* < Python 3.6.4 64-bit Q@O0 A0 ® A

@ objects.py > Tutorial Editor X 1

o O;Ject;o',;\; teel);f;::nlg;;e e Torii TT ADD TEXT [@ A%SMPPET] x> UNDO U4) a H

§ class Rectangle: rICh text
4 def _init (self, w, h): Programming with Objects in Python

5 self.w = w

6 self.h = h So far in Python, we've used a couple of types of organized data structures: lists, sets,

7 self.description = "This shape has not been described yet" and dictionaries. Each of these data structures have their own properties---like length,

8 self.author = "Nobody has claimed to make this shape yet" or keys. They also have their own methods, like the ability to "append” to a list or, or

9 get the index of an element from the list.

10 def area(self): :

11 return self.w * self.h What if we want to define our own data structures, with useful, common properties and

12 data structures? Like, for instance, maybe we wanted to refer to a "shape” object that

13 def set_description(self, text): has an area and a perimeter in a program where we draw shapes on a screen.

14 self.description = text

15 Wouldn't it be cool if we could just create an object with all of these built-in properties

16 def set _scale(self, scale): I and methods with a call that looked like this?

17 salf.w = salf.w * scale VIEWAS SNIPPET ~ PROGRAM SNAPSHOT

18 self.h = self.h * scale I rectangle = Rectangle(90, 45)

19
20
21| class Square(Rectangle):
22 def init (self, w): I
23 self.w = w "
24 self.h = w Snlppets
25
26

27| rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)

29| fat_rectangle = Rectangle(130, 120) "

2 linked
31 print("The width of the rectangle is: " + str(rectangle.w)) .

., edits
33 print("And its description is: " + str(rectangle.description))

34

35| # finding the area of your rectangle:

36 print("The area of the rectangle is: " + str(rectangle.area()))

37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

LA

ster* < Python 3.6.4 64-bit Q@0 A0 @ A

@ objects.py ® Tutorial Editor X 1

@ objects.py > ..

1 & An exanple of & class Torii Tr ADD TEXT <> ADD SNIPPET X~ UNDO O s | :
§ class Rectangle: rICh teXt
4 def _init (self, w, h): Programming with Objects in Python
5 self.w = w
6 self.h = h So far in Python, we've used a couple of types of organized data structures: lists, sets,
7 self.description = "This shape has not been described yet" and dictionaries. Each of these data structures have their own properties---like length,
8 self.author = "Nobody has claimed to make this shape yet" or keys. They also have their own methods, like the ability to "append” to a list or, or
9 get the index of an element from the list.
10 def area(self): :
11 return self.w * self.h What if we want to define our own data structures, with useful, common properties and
12 data structures? Like, for instance, maybe we wanted to refer to a "shape” object that
13 def set_description(self, text): has an area and a perimeter in a program where we draw shapes on a screen.
14 self.description = text
15 Wouldn't it be cool if we could just create an object with all of these built-in properties
16 def set scale(self, scale): . and methods with a call that looked like this?
17 calf . w = calf.w * scale VIEWAS SNIPPET ~ PROGRAM SNAPSHOT
18 self.h = self.h * scale I rectangle = Rectangle(9q, 45)
19 = ADD CONSOLEOUTPUT & B
20
21| class Square(Rectangle):
22 def __init_ (self, w): j
23 self.w = w "
24 self.h = w Snlppets
25
26
27| rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120) "
2 linked
31| print("The width of the rectangle is: " + str(rectangle.w)) .
- edits
33! print("And its description is: " + str(rectangle.description))
34
35 # finding the area of your rectangle:
36| print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

LA

ster* < Python 3.6.464-bit Q@O0 A0 ® A

@ objects.py ® Tutorial Editor X 1

® objects.py > %2 Rectangle

1 # An example of a class Tori Tr ADD TEXT <> ADD SNIPPET ™~ UNDO < il :
2| class Rectangle: .
3 [l Ch text
4 def init (self, w, h): Programming with Objects in Python
5 self.w=w
6 self.h = h So far in Python, we've used a couple of types of organized data structures: lists, sets,
7 self.description = "This shape has not been described yet" and dictionaries. Each of these data structures have their own properties---like length,
8 self.author = "Nobody has claimed to make this shape yet" or keys. They also have their own methods, like the ability to "append" to a list or, or
9 get the index of an element from the list.
10 def area(self): '
11 return self.w * self.h What if we want to define our own data structures, with useful, common properties and
12 data structures? Like, for instance, maybe we wanted to refer to a "shape” object that
13 def set_description(self, text): has an area and a perimeter in a program where we draw shapes on a screen.
14 self.description = text
15 Wouldn't it be cool if we could just create an object with all of these built-in properties
16 def set_scale(self, scale): and r%thods with a call that looked like this? > B
I B
17 self.w = self.w x scale
18 self.h = self.h * scale rectangle = Rectangle(90, 45)
19
20 :)
In Python, such data structures are called "objects”. And to create objects, first we
21| class Square(Rectangle): h define " | i h £ obi Th | d list of
9 def init (self, w): | ave to define tt?mp ates” for each new type of o cht. ese templates would list o
23 salf.w = w all of the properties that could be defined for the object, and the methods that you can . _t
24 self.h = w call on the object to get its data or to transform that data. SN p pe S
25
-6 Those templates are called classes, and here's how we define them.
27! rectangle = Rectangle(90, 45) . la
28| long_rectangle = Rectangle(120, 10) Cluss Rectangle:
29| fat_rectangle = Rectangle(130, 120) , "
o)) def __init__(self, w, h): linked
. . . If.w=w
31| print("The width of the rectangle is: " + str(rectangle.w)) et :
39 self.h = h edrts
331 print("And its description is: " + str(rectangle.description)) self.description = "This shapg has not been Qescrlbed i
34 self.author = "Nobody has claimed to make this shape yet"
35 # finding the area of your rectangle:
36 | print("The area of the rectangle is: " + str(rectangle.area())) Wite| Preview H B I & & M b m ==
37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

LA

ster < Python 3.6.464-bit Q@O0 A0 @ A

@ objects.py ® Tutorial Editor X 1

@ objects.py > ..

1 # An example of a class Tori Tr ADD TEXT <> ADD SNIPPET x> UNDO O s | :
2| class Rectangle: B | [self.w = w - .
3 Self.h - h rICh teXt
4 def __init__ (self, w, h): self.description = "This shape has not been described yet"
5 self.w = w self.author = "Ng?ody has claimed +~ mnalin dhic chana wadt
6 self.h = h = ADD CONSOLEOUTPUT &% B
d sell.description = "This Shap(_e S hot been qescrlbed yEL This class is a template for creating "shape” objects. Each class has a name---here,
8 self.author = "Nobody has claimed to make this shape yet" - " " -
5 it's Shape . They also have a "constructor” method---which is always called
10 dof area(self): I __1n1t.__ , Wthlf\ IS ia function that creates a. n.evx.r mstarpe of the object from a list of O Utp Uts
11 return self.w * self.h properties the object is supposed to have. This init function gets called to create the
12 class whenever you call the name of the class. The body of the __init__ function
13 def set_description(self, text): sets up the properties of the object by setting values on "self". These properties will be
14 self.description = text accessible using the dot operator on the object that gets created by the constructor.
15
16 def set scale(self, scale): ' So, paste the class code at the top of your file, and then initialize a shape using the
17 self.w = self.w * scale command we show at the top of the tutorial. Then, let's see what data the rectangle
18 self.h = self.h * scale has:
19 VIEWAS SNIPPET ~ PROGRAM SNAPSHOT
20 print("The width of the rectangle is: " + str(rectangle.w))
21| class Square(Rectangle):
22 def init (self, w): j
23 self.w = w "
24 self.h = w Snlppets
25
26
271 rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120) ‘ir]L(
7 ed
31| print("The width of the rectangle is: " + str(rectangle.w)) .
. edits
33! print("And its description is: " + str(rectangle.description))
34
35 # finding the area of your rectangle:
36| print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

LA

ster* < Python 3.6.4 64-bit Q@O0 A0 @ A

® objects.py > Tutorial Editor X (1]

@ objects.py) ... e d .
> 1; S T Torii T+ ADD TEXT <> ADD SNIPPET | &~ UNDO O S I
2| class Rectangle: and methods with a call that looked like this? ;
3 [l Ch text
4 def __init__(self, w, h): rectangle = Rectangle(90, 45)
5 self.w = w
6 self.h = h . .
v self.description = "This shape has not been described yet" In Python, such data structures are called "objects". And to create objects, first we
3 self.author = "Nobody has claimed to make this shape yet" have to define "templates” for each new type of object. These templates would list of
9 all of the properties that could be defined for the object, and the methods that you can ou t U .t g
10 def area(self): . call on the object to get its data or to transform that data. p
11 return self.w * self.h
12 Those templates are called classes, and here's how we define them.
13 def set_description(self, text):
14 self.description = text class Rectangle:
23 output
16 def set_scale(self, scale): : def __init__(self, w, h): F)
17 self.w = self.w x scale self.w =w
18 self.h = self.h * scale self.h = h updates
19 self.description = "This shape has not been described yet"
20 self.author = "Nobody has claimed to make this shape yet"
21| class Square(Rectangle):
27 def __init_ (self, w): | This class is a template for creating "shape” objects. Each class has a name---here, .
e el it's Shape . They also have a "constructor” method---which is always called SN p pets
24 self.h = w —r S : : : :
e __init__ , which is a function that creates a new instance of the object from a list of
-6 properties the object is supposed to have. This init function gets called to create the
27| rectangle = Rectangle(9@, 45) class whenever you call the name of the class. The body of the __init__ function
28| long_rectangle = Rectangle(120, 10) sets up the properties of the object by setting values on "self". These properties will be
29| fat_rectangle = Rectangle(130, 120) accessible using the dot operator on the object that gets created by the constructor. ‘ | N ke d
30 T :
31| print("The width of the rectangle is: " + str(rectangle.w)) So, paste the class code at the top of your file, and then initialize a shape using the .
32 command we show at the top of the tutorial. Then, let's see what data the rectangle ed ITS
33| print("And its description is: " + str(rectangle.description)) has:
34
35 # finding the area of your rectangle: print("The width of the rectangle is: " + str(rectangle.w))
36| print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle The width of the rectangle is: 90
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

A A
ster* < Python 3.6.4 64-bit

DoAO

® objects.py > Tutorial Editor X (1]

@ objects.py) ... e d .
> 1; S T Torii T+ ADD TEXT <> ADD SNIPPET | &~ UNDO O S I
2| class Rectangle: and methods with a call that looked like this? ;
3 [l Ch text
4 def __init__(self, w, h): rectangle = Rectangle(90, 45)
5 self.w = w
6 self.h = h . .
v self.description = "This shape has not been described yet" In Python, such data structures are called "objects". And to create objects, first we
3 self.author = "Nobody has claimed to make this shape yet" have to define "templates” for each new type of object. These templates would list of
9 all of the properties that could be defined for the object, and the methods that you can ou t U .t g
10 def area(self): . call on the object to get its data or to transform that data. p
11 return self.w * self.h
12 Those templates are called classes, and here's how we define them.
13 def set_description(self, text):
14 self.description = text class Rectangle:
23 output
16 def set_scale(self, scale): : def __init__(self, w, h): F)
17 self.w = self.w x scale self.w =w
18 self.h = self.h * scale self.h = h updates
19 self.description = "This shape has not been described yet"
20 self.author = "Nobody has claimed to make this shape yet"
21| class Square(Rectangle):
27 def __init_ (self, w): | This class is a template for creating "shape” objects. Each class has a name---here, .
e el it's Shape . They also have a "constructor” method---which is always called SN p pets
24 self.h = w —r S : : : :
e __init__ , which is a function that creates a new instance of the object from a list of
-6 properties the object is supposed to have. This init function gets called to create the
27| rectangle = Rectangle(9@, 45) class whenever you call the name of the class. The body of the __init__ function
28| long_rectangle = Rectangle(120, 10) sets up the properties of the object by setting values on "self". These properties will be
29| fat_rectangle = Rectangle(130, 120) accessible using the dot operator on the object that gets created by the constructor. ‘ | N ke d
30 T :
31| print("The width of the rectangle is: " + str(rectangle.w)) So, paste the class code at the top of your file, and then initialize a shape using the .
32 command we show at the top of the tutorial. Then, let's see what data the rectangle ed ITS
33| print("And its description is: " + str(rectangle.description)) has:
34
35 # finding the area of your rectangle: print("The width of the rectangle is: " + str(rectangle.w))
36| print("The area of the rectangle is: " + str(rectangle.area()))
37

38 # describing the rectangle The width of the rectangle is: 90
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

A A
ster* < Python 3.6.4 64-bit

DoAO

® objects.py X 0w o - Tutorial Editor >

® objects.py > ...
1 # An example of a class
2| class Rectangle:

Torii Tr ADD TEXT <> ADD SNIPPET | M~ UNDO O Fail

B e e i B i et i

all of the properties that could be defined for the object, and the methods that you can

3 . :
4 deft _dnit (self, w, h): call on the object to get its data or to transform that data.
5 self.w = w '
: i L Those templates are called classes, and here's how we define them.
self.h =
7 self.description = "This shape has not been described yet"
_ , class Rectangle:

8 self.author = "Nobody has claimed to make this shape yet"
; . def __init__(self, w, h):
10 def area(self):
11 { 1f 1f.h self.w =w
= return self.w x self. celf h = h
13 e TP P self.description = "This shape has not been described yet"

ef set_ escrlP 1?n self, text): self.author = "Nobody has claimed to make this shape yet"
14 self.description = gkt
1L
16 def set scale(self, scaé d d This class is a template for creating "shape” objects. Each class has a name---here,
17 self.w = self.w % 9 re p e a te CO e it's Shape . They also have a "constructor” method---which is always called
18 self.h = self.h * g __init__, which is a function that creates a new instance of the object from a list of
19 properties the object is supposed to have. This init function gets called to create the
20 class whenever you call the name of the class.
21| class Square(Rectangle):
22 def __init__ (self, w): The body of the __init__ function sets up the properties of the object by setting
23 self.w = w values on "self". These properties will be accessible using the dot operator on the SN p pets
24 self.h = w object that gets created by the constructor.
25
26 self.w = w
27| rectangle = Rectangle(90, 45) celf.h = h
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120)
30 So, paste the class code at the top of your file, and then initialize a shape using the
31/ print("The width of the rectangle is: " + str(rectangle.w)) command we show at the top of the tutorial. Then, let's see what data the rectangle
32 has:
33| print("And its description is: " + str(rectangle.description))
34 print("The width of the rectangle is: " + str(rectangle.w))

35 # finding the area of your rectangle:

36| print("The area of the rectangle is: " + str(rectangle.area()))
37 The width of the rectangle is: 90
38 # describing the rectangle

39 rectangle.set_description("A wide rectangle, more than twice as wide as it i _ _ _ . _
10 What if we want to define other properties of an object when we create it? Well in that

ster* & Python3.6.464-bit @O0 Ao Ln 25, Col1 Spaces:4 UTF-8 LF Python

@ A

® objects.py X 0 O - Tutorial Editor

e 0

;l.'D

cts.py »

1 # 'A;whexample A R, Torii Tt ADD TEXT <> ADD SNIPPET X~ UNDO O T :
2| class Rectangle: : ; - -

3 print("And 1ts description is: " + str(rectangle.description))

4 def __init_ (self, w, h):

5 self.w = w

6 self.h = h The width of the rectangle 1is: 90

7 self.description = "This shape has not been described yet" And its description is: This is a rectangle

8 self.author = "Nobody has claimed to make this shape yet"

9

10 def area(self): : Object data can be accessed as properties. Common object operations can be

1fa return self.w x self.h L accessed as methods. The simplest type of method just gets some data from the

12 object. One example of this is the list.indexOf operation on lists.

13 def set_description(self, text):

14 self.description = text Let's add a method to the shape objects that gets the area of the object. Place this

15 method right underneat the __init__ method in the Shape class.

16 def set scale(self, scale): ,

17 self.w = sel def area(self):

18 self.h = sel return self.w * self.h

. f ted coo

e ra g m e n e CO e What does this method do? When this method is called (like so...)

21] class Square(Rectang

= deT _init_(sello=wr: | print("The area of the rectangle is: " + str(rectangle.area())) .
7L self.w = w Snlppets
24 self.h = w

25 Then the area def gets invoked. The object is passed in as the self parameter. The
26 properties on the object---like width and height---are accesible through self. This

27| rectangle = Rectangle(90, 45) method then computes area by multiplying the dimensions. Add the print statement
28| long_rectangle = Rectangle(120, 10) above to your program, and you should see this area:

Rectangle(130, 120)

29| fat_rectangle

30

31| print("The width of the rectangle is: " + str(rectangle.w)) The width of the rectangle is: 90

32 And 1ts description is: This 1s a rectangle

33] print("And its description is: " + str(rectangle.description)) el G G il e e 10 s 2ved

34

Sof s aHiNo Ihg = HiEsareaioiRyOUrerect anie: Is it possible to make new classes of objects that build on other types of objects? Yes!
?75 print("The area of the rectangle is: " + str(rectangle.area())) So let's say, for instance, you want to be able to create squares. A square needs only

- requires us to define one dimension, as its width and height are the same:
38 # describing the rectangle

39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

A LA
ster* < Python3.6.464-bit Q0 A0 Ln 25,Col1 Spaces:4 UTF-8 LF Python @ A

rich text

outputs

output
updates

VIEWAS SNIPPET PROGRAM SNAPSHOT

class Square(Rectangle):
def __init__(self, w):
self.w=w

SLULILL, = ADD CONSOLE OUTPLY® S B Sﬂippets

linked
edits

hidden
snippets

@ objects.py @ Tutorial Editor X 1l

® objects.py > %2 Square

1 # An exanple of & class Torii Tt ADD TEXT <> ADD SNIPPET X~ UNDO O i :

2 ClaSS Rectangle: Wiiat uuoes uns meunioua uor wiicimt uns imetiou s vancu (ke Ssu.L.) °

: rich text
4 def _init (self, w, h): print("The area of the rectangle is: " + str(rectangle.area()))

5 self.w = w

6 selr.n =h | | Then the area def gets invoked. The object is passed in as the self parameter. The

7 Se{:'desﬁrlptlﬂn = Th;S Sh?p? has not iee"hqes‘:;lbed ye't' properties on the object---like width and height---are accesible through self. This

2 seti-author = “houOGy has Cialied o Maks Lils shape yet method then computes area by multiplying the dimensions. Add the print statement
10 def area(self): r above to your program, and you should see this area: O Utp UtS
11 return self.w % self.h
12 The width of the rectangle is: 90
13 def set_description(self, text): The area of the rectangle is: 4050
14 self.description = text
A5 i DOSSi - - - output
16 def set scalelself. scale): Is it possible to make new classes of objects that build on other types of objects? Yes! p
17 sel;.w = self.w * scale ' So let's say, for instance, you want to be able to create squares. A square needs only d
18 self.h = self.h * scale requires us to define one dimension, as its width and height are the same: U p ates
19
20
21| class Square(Rectangle):
22 def init (self, w): |
23 self.w = w r1i
24 self.h = w . S ppets
25
26
27| rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120) ‘ir]L(€3(j
30
31| print("The width of the rectangle is: " + str(rectangle.w)) :
. edits
331 print("And its description is: " + str(rectangle.description))
34
35 # finding the area of your rectangle:
§€75| print("The area of the rectangle is: " + str(rectangle.area())) h|dden

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i

snippets

LA

ster* © Python3.6.464-bit Q@O0 AO0 @ A

@ objects.py ®
@ objects.py > [@]lsquare

20
21| class Square(Rectangle):
22 def __init_ (self, w):
23 self.w =w
24 self.h = w
25
26
27| rectangle = Rectangle(90, 45)
28| long_rectangle = Rectangle(120, 10)
29| fat_rectangle = Rectangle(130, 120) '
30
31| print("The width of the rectangle is: " + str(rectangle.w))
32
33] print("And its description is: " + str(rectangle.description))
34
35 # finding the area of your rectangle: .
36| print("The area of the rectangle is: " + str(rectangle.area()))
37
38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i
40 -
41 # making the rectangle 50% smaller |
42 rectangle.set_scale(0.5)
43
44 # re-printing the new area of the rectangle
45 print(rectangle.area())
46
47 square = Square(100)
48| print("The square's width: " + str(square.w))
49| print("The square's height: " + str(square.h))
50

ster* < Python 3.6.464-bit Q0 A0

Tutorial Editor X 1

TT ADD TEXT <> ADD SNIPPET K~ UNDO

S BB

Torii

wWiiaruoes uns metnioua uu s wiicit uns mmetiou s vancu (ke su..)

"

print("The area of the rectangle 1is: + str(rectangle.area()))

Then the area def gets invoked. The object is passed in as the self parameter. The
properties on the object---like width and height---are accesible through self. This
method then computes area by multiplying the dimensions. Add the print statement
above to your program, and you should see this area:

The width of the rectangle is: 90

The area of the rectangle is: 4050

Is it possible to make new classes of objects that build on other types of objects? Yes!
So let's say, for instance, you want to be able to create squares. A square needs only
requires us to define one dimension, as its width and height are the same:

square = Square(100)
print("The square's width:
print("The square's height:

+ str(square.w))

+ str(s e _
= ADD CONSOLEOUTPUT & B

width of the rectangle is: 90
area of the rectangle is: 4050

square's width: 100
square's height: 100

rich text

outputs

output

updates

snippets

linked
edits

hidden
snippets

A

@ objects.py Tutorial Editor X 1l

'g‘ZGI)JT Lo : Torii Tt ADD TEXT <> ADD SNIPPET ¥~ UNDO O & :
21 class Square(Rectangle): VWAL UuES IS ITIEUUU U VWITETT UNS 1TIEUIUU 1S sdaneu (11Ke SULL) .
22 def __init_ (self, w): r|(:F]'t63>(t
23 self.w = w print("The area of the rectangle i1s: " + str(rectangle.area()))
24 self.h = w
52 Then the area def gets invoked. The object is passed in as the self parameter. The

properties on the object---like width and height---are accesible through self. This

27| rectangle = Rectangle(90, 45) L : . :
method then computes area by multiplying the dimensions. Add the print statement
28| long_rectangle = Rectangle(120, 10) ,
29| fat_rectangle = Rectangle(130, 120) i above to your program, and you should see this area: O Utp UtS
30
31! print("The width of the rectangle is: " + str(rectangle.w)) The width of the rectangle is: 90
32 The area of the rectangle is: 4050
33| print("And its description is: " + str(rectangle.description))
34
35 # finding the area of your rectangle: Is it possible to make new classes of objects that build on other types of objects? Yes! O Utp ut
36| print("The area of the rectangle is: " + str(rectangle.area())) : So let's say, for instance, you want to be able to create squares. A square needs only d
37 requires us to define one dimension, as its width and height are the same: U p ates

38 # describing the rectangle
39 rectangle.set_description("A wide rectangle, more than twice as wide as it i
40 —

41 # making the rectangle 50% smaller

square = Square(100)

42 rectangle.set_scale(®.5) print("The square's width: " + str(square.w)) Sﬂ|ppets
5 o print("The square's height: " + str(sqﬁy“" i

44 # re-printing the new area of the rectangle = ADD CONSOLE OUTPUT Q)

45 print(rectangle.area()) r

46 width of the rectangle is: 90

47 square = Square(100) area of the rectangle is: 4050

48| print("The square's width: " + str(square.w)) square's width: 100 ‘Iﬂked
49| print("The square's height: " + str(square.h)) square’s height: 100

50

edits

hidden
snippets

ster* < Python 3.6.464-bit Q@O0 A0 ® A

Program Analysis

source order tutorial order snapshot

@ objects.py Torii TT ADD TEXT <> ADD SNIPPET X~ UNDO O %S | :
@ objects.py > ... C]. CISS Shape :
class Shape: Programming with Objects in Python
o So far in Python, we've used a couple of types of organized data structures: lists, sets, and def ——1 ni t——(Sel F ’ W) h) .
def __init__(self, w, h): dictionaries. Each of these data structures have their own properties-—-like length, or keys. 1 _F
self.w = w They also have their own methods, like the ability to "append" to a list or, or get the index of Sé W =W
self.h = h an element from the list.
VU | self.h = h
self.description = "This shape has not been describe : : .
. _ What if we want to define our own data structures, with useful, common properties and . . " .
self.author = "Nobody has claimed to make this shape data structures? Like, for instance, maybe we wanted to refer to a "shape" object that has Sel F . desc r pt-l- on = Thl S Shapf
an area and a perimeter in a program where we draw shapes on a screen. .
def (self): . self.au . an
' Wouldn't it be cool if we could just create an object with all of these built-in properties and
self.w *x self S I I I p p e methods with a call that looked like this? S I l I p p e
def (self, Textr: rectangle = Shape(90, 45)

self.description = text
In Python, such data structures are called

def (self, scale): define "templates” for each new type of of °
- S properties that could be defined for the ob S I I I e
self.w self.w *x scale

object to get its data or to transform that ¢

[J
self.h = self.h x scale Sn I et 2
Those templates are called classes, and here's how we define them.

class Shape:

rectangle = Shape(90, 45)

Il

class () : y " . .
i ISP def _intt_Cself, w, hy: print("The width of the rectangle 1is
o R self.w =w
self.w = w self.h = h
self.h = w self.description = "This shape has not been described yet"

self.author = "Nobody has claimed to make this shape yet"

snippet 3

rectangle = Shape(90, 45) This class is a template for creating "shap ° 1
Shape . They also have a "constructor" m
long_rectangle = Shape(! ° is a function that creates a new instance d S n I p pet
fat_rectangle = Shape(’ 't 2 is supposed to have. This init function get
S n I p p e the name of the class. The body of the __init__ function sets up the properties of the

print("The width of the rect object by setting values on "self". These properties will be accessible using the dot
operator on the object that gets created by the constructor.

[]
So, paste the class code at the top of your file, and then initialize a shape using the
(rectangle.areal()) S I I I p p e command we show at the top of the tutorial. Then, let's see what data the rectangle has:

print("The width of the rectangle is: " + str(rectangle.w))

execute

The width of the rectangle

rectangle.set_description(

 ing e e snippet 3 generated output

Evaluating Torii

Q1. Does Torii support efficient
editing of tutorials?

Q2. Does Torii support flexible
snippet organization?

An In-Lab Study of Torii

Participants: N = 12 tutorial authors

Maintenance Task x 2: Update a tutorial,
with Torii and with a baseline tool.

Exploration: Create a tutorial about object-oriented
orogramming, based on an existing program.

Efficiency of editing tasks with Torii

subtask (a) subtask (b) subtask (c)
iNnked edits localized edits revert edits

e 0 - HH I
T3 o 1 2 3

| 3 O

Time (min) Time (min) Time (min)

Efficiency of editing tasks with Torii

subtask (a) subtask (b) subtask (c)
iNnked edits localized edits revert edits

e 0 - HH I
T3 o 1 2 3

| 3 O

Time (min) Time (min) Time (min)

Enough evidence to show participants could use Torii to make these
edits. Not enough to claim they're efficient with this design.

Often times when coding, one will want to create a kind of "Template” to create objects.
These objects might have the same kinds of attributes, but different values from one
another. For example, if we wanted to create multiple dog variable objects, you might create
a template for a "Dog" with the different attributes of "name" and "color". For each dog object
you then create, you could assign those values. For example, when creating a Dog variable
Mocha, you might assign its name to be "Mocha" and its color to be "brown".

These kinds of "templates” are called "classes” in computer science and here we will learn
how to create one.

The first thing we want to do when creating our template / class is to actually declare it. This
is done simply with the keyword "class" and the name of the object you'll be creating. Here is
the declaration of a Shape classsis ST S eeiiasial.

class Shape:

From here, we need to find aw
shape, some things we might care a eignt . er to portray this,
we would include these as instance variable what we will call a constructor:

def __init__(self, w, h):

Every time, we go to create a new "Shape” tyep v
for the "init" of the shape class and know that a
a "w" and an "h" as its arguments. From there, it

repeated,

attributes using the body of the constructor: e m b e I I is h e d Co d e

def __init__(self, w, h):

self.w =w
self.h = h
self.description = "This shape has not been described yet"

self.author = "Nobody has claimed to make this shape yet"

In order to tell the program that it actually needs to use this constructor to create a shape
variable, we might do something like the following:

rectangle = Shape(100, 45)
long_rectangle = Shape(120, 10)
fat rectanale = Shape(130. 120)

Presenting snippets flexibly

Regardless of whatever reason you're creating Shapes for, you will likely, at some point need
to access those shapes' height and width attributes. In Python, we can't exactly say "get
rectangle's height". Computers aren't smart. However, we can use something called "dot
notation" that the computer will recognize as doing just that!

In dot notation, you specify the object you're trying to access something from, follow it with a

! and then include the name of the attribu

name.attribute h id d e n Co d e

A real example of this can be seen here:

square = Square(100)
print(square.w)

Here (assuming we've created a square class and a Square type variable named "square”,
we're able to access its "W" attribute that was passed in as 100. This would print the
following:

But where did this "Square”
square is really a shape, so
and height.

generated output

Because a sqare is so simil
of our Shape class'

Presenting snippets flexibly

Repetition (6 of 12)
Show a class multiple times, adding
new properties or methods each time

Out-of-order execution (1 of 12)
Present the use of a class before its

declaration

Fragmentation (3 of 12)
Split up the declaration and
implementation of a class / method

Takeaways from Study

Q1. Authors could perform linked edits more

quicky with Torii than a baseline tool, though this
is not statistically significant.

Q2. Authors used Torii's capabilities to flexibly
organize snippets in tutorials.

This Talk

CodeScoop [CHI 18]

snippets (select) simplify

Toril [cHI 201

tutorials (supplement) (sequence)

|

Gathering tools [cHI '19]

.III snippets tutorials (select) (supplement)

This Talk

[select j simplify

[supplement j [sequence]

This Talk

Gathering tools [cHI '19]

snippets

tutorials

(select) (supplement)

Notebook Model of Exploratory Programming

+ < @D 4+ ¥ MRun B C » Code 5

In [3 1. Incremental execution

Notebook Model of Exploratory Programming

B + < @D 4 v MHRun B C » Code s | &3

In [1]: dimport matplotlib.pyplot as plt

from sklearn.cluster import KMeans 1 o |ncrementa‘ exeCUtiOn

from sklearn import datasets

In [2]: data = datasets.load_iris().data[:,2:4] 2. |n_Situ OUtpUt

petal length, petal width = data[:,@], data|:,1]

In []: I

Notebook Model of Exploratory Programming

<

In

In

@GN » ¥ b, Run

mC »

Code

[1]:

[2]:

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().data[:,2:4]

4

1. Incremental execution

2. In-situ output

petal length, petal width = data[:,0], data:,1]

In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

3. Incremental changes

Average petal length: 3.758

In [4]: clusters = KMeans(n_clusters=3).fit(data).labels

In [5]: plt.scatter(petal length, petal width, c=clusters)

Out[5]: <matplotlib.collections.PathCollection at 0x124e294e0>

25 1 * ™
®* o
o 265 o
e & k3
SV & o
20 4 reeosr ® 0
P 5
29 ee o
13
@ @
15 1 *
]
10 1
0.5 ..
PR]
e »
N >
2
OO‘ |
1 2 3 4 5 b 7

In []:]

Notebook Model of Exploratory Programming

4

& @B 42+ ¥ MRy |l C » | Code

In [1]: import matplotlib.pyplot as plt

from sklearn.cluster import KMeans 1 o | n Cre m e nta ‘ exeCUti O n

from sklearn import datasets

In [2]: data = datasets.load iris().data[:,2:4]
petal length, petal width = data[:,0], data[:,1]

In [12]: petal _length, petal width = data[:,1], datal:,@] 3 . |ncrementa‘ Changes
In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),)) 4 ContrO‘ Over ‘ayOut

2. In-situ output

Average petal length: 3.758

In [18]: clusters = KMeans(n_clusters=2).fit(data).labels

In [11]: plt.scatter(petal length, petal width, c=clusters)

Out[11]: <matplotlib.collections.PathCollection at 9x10b32ea20>

25 1 oA
ks @
o e -
e e ®
ee © -
20 A ~. L
... "-ee e
e o >
15 1 T e P
= @ s ®
L nsad
"“-ee o
R
10 4 L L L
0.5 1
0.0 -

Notebook Model of Exploratory Programming

1 WEEK PASSES

Notebook Model of Exploratory Programming

4

x @0 & ¥ MRun B C M Code

In [10]: clusters = KMeans(n_clusters=2).fit(data).labels_ «1
[

Incremental execution

In [11]: plt.scatter(petal length, petal width, c=clusters)

Out[11]: <matplotlib.collections.PathCollection at ©x10b32ea20> 2 . | n —Sltu O Utp Ut

b 3. Incremental changes

15 4 v Ges o

4. Control over layout

© E
® :‘
"»-ee o
-
10 - LL L
0.5 1
0.0 - . .
1 2 3 - 5 b 7

In [1]: import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

In [2]: data = datasets.load iris().data[:,2:4]
petal length, petal width = data[:,0], data[:,1]

In [12]: petal length, petal width = data[:,1], data:,0]

In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

Notebook Model of Exploratory Programming

< @0 ¥ MRun B C MW Code

In [10]:

In [11]:

Out[11]:

In [1]:

In [&2]:

In [12]:

In [3]:

4

clusters = KMeans(n_clusters=2).fit(data).labels_

plt.scatter(petal length, petal width, c=clusters)

<matplotlib.collections.PathCollection at ©x10b32ea20>

~= | How did |
L _|produce this?

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load_iris().data[:,2:4]
petal length, petal width = data[:,0], data[:,1]

petal_length, petal width = data[:,1], datal:,0]

print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

1.

1 WEEK LATER

How did | produce this
result?

Notebook Model of Exploratory Programming

4

B+ xx @ 0B S % MRun B C » Code

In [10]: clusters = KMeans(n_clusters=2).fit(data).labels_

In [11]: plt.scatter(petal length, petal width, c=clusters)

Out[11]: <matplot;}J;Qﬁllections.PathCollection at 0x10b32ea20>

" 2854 PR

’l . :.g,-.
' petal_length? | L .
o ol |
. ‘ produce this? 1 WEEK LATER

import matplotlib.pyplot as plt

1. How did | produce this
from sklearn.cluster import KMeans
from sklearn import datasets resu ‘t?

Lf},data = datasets.load_iris().data[:,2:4]
&% petal length, petal width = data[:,0], data[:,1]

In [12‘3{fpetal_1ength, petal width = data[:,1], data:,@]

In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

Notebook Model of Exploratory Programming

+ < @ B

Didn't | have a better

In [10]: | cl

- wf VErsion of this?

Out[11l]: <ma

-

10 4 0.0..

. 1 WEEK LATER
1 2 3 4 5 : 7

In [1]: import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

In [2]: data = datasets.load iris().data[:,2:4]

petal length, petal width = data[:,0], data[:,1] 2. Didnlt | have a better
In [12]: petal_length, petal_width = data[:,1], data|:,0] VerSiOn O-F thls?

In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

Notebook Model of Exploratory Programming

+ < @ B &|¥Y MRun B C MW Code

In [10]:

In [11]:

Out[11]:

In [1]:

In [&2]:

In [12]:

In [3]:

4

clusters = KMeans(n_clusters=2).fit(data).labels_

plt.scatter(petal length, petal width, c=clusters)

<matplotlib.collections.PathCollection at ©x10b32ea20>

25 1 ...
o 600 =
A
oma @ &
20 4 Rl L
Rl
-e Wee
L
15 ... - Ed
@ = ®
- é
"-ee o
-

N What can |
S T S S S getrldof7

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

0.0 4

data = datasets.load_iris().data[:,2:4]
petal length, petal width = data[:,0], data[:,1]

petal_length, petal width = data[:,1], datal:,0]

print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

1. Incremental execution
2. In-situ output

3. Incremental changes
4. Control over layout

1 WEEK LATER

3. What can | get rid of?

Messes in Computational Notebooks

Disappearance

Deleted / overwritten code

QOut-of-order execution
1/2 of notebooks on

GitHub [Rule et al. 2018]

Dispersion

Too many cells

[1]

[2]

[6]

[3]

[7]

Notebooks contain
ugly code and dirty
tricks [Rule et al. 2018]

31/ 41 surveyed
participants had trouble

finding prior analyses
[Kery et al. 2018]

CobDE GATHERING TooLs Demo

1 WEEK PASSES

CobDE GATHERING TooLs Demo

Gather to: Y Clipboard | & Notebook ' Revisions % Clear

In [10]: clusters = KMeans(n_clusters=2).fit(data).labels

Task 1: Recovering Code

In [11]: plt.scatter(petal_length, petal_width, c=clusters)

Out[11]: <matplotlib.collections.PathCollection at ©@x1@8eacba8>

o) adZ |, HOW dld I
B a0k produce this?

In [1]: dimport matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

In [2]: data = datasets.load iris().data[:,2:4]
petal_length, petal_width = data[:,0], data[:,1]

In [12]: petal_length, petal width = data[:,1], datal:,0]

In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

CobDE GATHERING TooLs Demo

Gather to: Iy Clipboard | & Notebook 'O Revisions X Clear

Task 1: Recovering Code Q

Variables

<matplotlib.collections.PathCollection at ©x108eacba8>

How did |

i produce this?

0.5 1

004,

o e, Outputs

petal length, petal width J

Average petal length: 3.758

CobDE GATHERING TooLs Demo

Gather to: I Clipboard & Notebook ' Revisions

X Clear

In [10]: clusters = KMeans(n_clusters=2).fit(data).labels

In [11]: plt.scatter(petal_length, petal_width, c=clusters)

Out[11]: ¢matplotlib.collections.PathCollection at @x1@8eacba8>

Task 1: Recovering Code

25 A :..i:;:: B IL-iu[:>‘t/\/' (:]’i&(:}, I
T produce this?

In [1]: dimport matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

In [2]: data = datasets.load iris().data[:,2:4]
petal_length, petal_width = data[:,0], data[:,1]

In [12]: petal_length, petal_width = data[:,1], data|:,0]

In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

CobDE GATHERING TooLs Demo

Gather to: I3 Clipboard =& Notebook 'O Revisions =% Clear

In [10]: clusters = KMeans(n_clusters=2).fit(data).labels

Task 1: Recovering Code

In [11]: plt.scatter(petal length, petal width, c=clusters)

Out[11]: <matplotlib.collections.PathCollection at @x1@8eacba8>

25 1 :..i;;:: . l-ii‘::>‘qul (:],im(:ll I
a0k produce this?
= Request cell subset that produced the result.

In [1]: import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

In [2]: data = datasets.load_iris().data[:,2:4]
petal_length, petal width = data[:,0], data[:,1]

In [12]: petal_length, petal width = data[:,1], data:,0]

In [3]: print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

CobDE GATHERING TooLs Demo

Gather to:| Iy Clipboard | & Notebook | © Revisions = % Clear

In [10]:

In [11]:

Out[11]:

In [1]:

In [2]:

In [12]:

In [3]:

clusters = KMeans(n_clusters=2).fit(data).labels

plt.scatter(petal length, petal width, c=clusters)

<matplotlib.collections.PathCollection at ©x108eacba8>

25 1 o ™
&)
o 00 »
LA
i, & L
20 1 ~. L
... "-_-ee o
LA D . £
15 1 . Gon Gwe
e o >
* cmmmwes
"-ese o
Lad
10 4 LL L
0.5 1
0.0 4

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().data[:,2:4]
petal_length, petal_width = data[:,0], data[:,1]

petal length, petal width = data[:,1], datal:,0]

print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

Task 1: Recovering Code

How did |

produce this?

Request cell subset that produced the result.

CobDE GATHERING TooLs Demo

+ & @ B 44 ¥ MRun B C MW Code | E=

In []:

In []:

In []:

In []:

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().data[:,2:4]
petal length, petal width = data[:,0], data[:,1]

clusters = KMeans(n_clusters=2).fit(data).labels

plt.scatter(petal length, petal width, c=clusters)

25 1 ® =
® *
o 460 El
e &
Rt &
20 1 e L
- B
-e Wee e
» =
o o “
15 @ Sk Ge
® B *
. GERRees
"“-ee o
=
10 4 oo
0.5 1
CIO |]
1 2 3 - 5 6 7

The gathered
code is...

e reduced
e ordered
* complete

Task 1: Recovering Code

How did |

produce this?

Q

Request cell subset that produced the result.

CobDE GATHERING TooLs Demo

Gather to: I Clipboard = & Notebook 'O Revisions % Clear

In [10]:

In [11]:

Out[11]:

In [1]:

In [2]:

In [12]:

In [3]:

clusters = KMeans(n_clusters=2).fit(data).labels_

plt.scatter(petal length, petal width, c=clusters)

<matplotlib.collections.PathCollection at ©x1@8eacba8>

e 1 ...
o 60 ®
LA
il -
20 oo
® #
-e Wee e
- »
15 eonm ¢
= :
® a
"-ee o
B
10 - oo @
05
0.0 - ,
1 2 3 4 5 £ 7

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load_iris().data[:,2:4]
petal_length, petal_width = data[:,0], data[:,1]

petal_length, petal width = data[:,1], data|:,9]

print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

Task 1: Recovering Code Q

Request cell subset that produced the result.

Task 2: Comparing Versions E}'

| e

Didn't | have a better

version of this?

CobDE GATHERING TooLs Demo

Gather to: I Clipboard =& Notebook 'O Revisions % Clear

In [10]:

In [11]:

out[11]:

In |1]:

In [2]:

In [12]:

In |31

clusters = KMeans(n_clusters=2).fit(data).labels

plt.scatter(petal length, petal width, c=clusters)

<matplotlib.collections.PathCollection at ©x108eacba8>

25 1 * ™
@ L)
o 400 &
LA
Dt & 3
20 - ~. ® 0
° -.e Wee
e® o *
15 4 ® &
. e "
* oo
"-ee o
s
10 4 oo B
05 -
0.0 - ,
1 2 3 4 5 v 7

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load_iris().data[:,2:4]

petal_length, petal_width

petal_length, petal_width

print("Average petal length:

Average petal length: 3.758

data[:,0], data[:,1]

data[:,1], data[:,0]

%.3f" % (sum(petal_length) / len(petal_length),))

Task 1: Recovering Code

Q

Request cell subset that produced the result.

Task 2: Comparing Versions E}'

Didn't | have a better

version of this?

Open a version browser for a result.

| e

CobDE GATHERING TooLs Demo

N

| %
Task 1: Recovering Code Q

Request cell subset that produced the result.

Task 2: Comparing Versions [_Tj'

Didn't | have a better

version of this?

Open a version browser for a result.

CobDE GATHERING TooLs Demo

R

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load _iris().data[:
petal length, petal width = data[:

clusters = KMeans(n_clusters=2).fi

plt.scatter(petal length, petal wi

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().data[:
petal length, petal width = data[:

clusters = KMeans(n _clusters=2).f1
clusters = KMeans(n_clusters=5).fi

plt.scatter(petal length, petal wi

Task 1: Recovering Code Q

Request cell subset that produced the result.

Task 2: Comparing Versions [_Tj'

S

Didn't | have a better

version of this?

Open a version browser for a result.

CobDE GATHERING TooLs Demo

N

| %
Task 1: Recovering Code QQ

Request cell subset that produced the result.

Task 2: Comparing Versions [_Tj'

s = KMeans(n_clusters=2).fi clusters = KMeans(n_clusters=2).f1
clusters = KMeans(n_clusters=5).fi

Didn't | have a better

version of this?

Open a version browser for a result.

CobDE GATHERING TooLs Demo

Current version

& Open in notebook Iy Copy cells

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().datal:
petal length, petal width = data[:

clusters = KMeans(n_clusters=2).fi

plt.scatter(petal_length, petal wi

<matplotlib.collections.PathCollec
tion at @xl1@8eacba8>

1 "
25 °
20 1 o
15 | 13
10 Ll L

05 1

004,

1 week ago

& Open in notebook I Copy cells

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().datal:
petal length, petal width = data[:

clusters
clusters

KMeans (n_clusters=2).f1i
KMeans(n_clusters=5).fi

plt.scatter(petal _length, petal wi

<matplotlib.collections.PathCollec
tion at 0x108f4a%e8>

25 1

20 1 .

15 1

00 4

a =
e o=
e
& e
10 1 LL L
..
- (A A
.?.0
B

X

Task 1: Recovering Code

Request cell subset that produced the result.

Task 2: Comparing Versions E}'

Didn't | have a better

version of this?

Open a version browser for a result.

S

CobDE GATHERING TooLs Demo

Gather to: Iy Clipboard | & Notebook '© Revisions

In [10]: clusters = KMeans(n _clusters=2).fit(data).labels

In [11]: plt.scatter(petal length, petal width, c=clusters)

Out[11]: <matplotlib.collections.PathCollection at @x1@8eacba8>

X Clear

Task 1: Recovering Code Q

Request cell subset that produced the result.

25 1 .0.
o 6 @
LA &
aadi -
20 - A L
-.e Wee e
e o
Ls oS3 °
S it
"-ee o
5
10 4 L L
0.5 1
0.0 - ,
1 2 3 4 5 6 7

In [1]: import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets
In [2]: data = datasets.load iris().data[:,2:4]
petal_length, petal_width = data[:,0], data[:,1]
In [12]: petal_length, petal_width = data[:,1], data|:,90]
In [3]:

print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

Task 2: Comparing Versions [__ij

Open a version browser for a result.

Task 3: Cleaning Notebook

What code can

| get rid of?

CobDE GATHERING TooLs Demo

Gather to: Y Clipboard =& Notebook '© Revisions @ % Clear

In [10]:

In [11]:

Out[11]:

In [1]:

In [2]:

In [12]:

In [3]:

clusters = KMeans(n_clusters=2).fit(data).labels

plt.scatter(petal length, petal width, c=clusters)

<matplotlib.collections.PathCollection at @x108eacba8>

25 1 » aw
- L]
-ee @ ¢ O °
LA
X &
20 1 A
-.,e Wee
» Bl
15 1 o ome '
DX) .
o emmmces
"-ee o
e
10 - see ®»
05 1
0.0 A :
1 2 3 4 5 5 7

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load_iris().data[:,2:4]
petal_length, petal_width = data[:,0], data[:,1]

petal_length, petal_width = data[:,1], datal:,0]

print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),))

Average petal length: 3.758

Task 1: Recovering Code Q

Request cell subset that produced the result.

Task 2: Comparing Versions [3

Open a version browser for a result.

Task 3: Cleaning Notebook

What code can

| get rid of?

... Request cell subset that produced the result.

Program Analysis: Slicing Notebooks

@ Notebook

some cells missing,

cleaned, ordered

some cells out-of-order
notebooks

versioned results

Program Analysis: Slicing Notebooks

@ Notebook @ Execution Log

some cells missing, all cells present, in-order
some cells out-of-order [1]

[6]
[7]

[10]

[11]

W] UOIINDDXD

[12]

Program Analysis: Slicing Notebooks

@ Notebook @ Execution Log

some cells missing, all cells present, in-order
some cells out-of-order [1]

[6]
[7]

[10]

[11]

W] UOIINDDXD

[12]

Program Analysis: Slicing Notebooks

@ Notebook @ Execution Log @ Program Slices [Weiser '81]
some cells missing, all cells present, in-order
some cells out-of-order [1]

[6]
[7]

[10]

[11]

W] UOIINDBXD

[12]

Program Analysis: Slicing Notebooks

@ Notebook @ Execution Log @ Program Slices [Weiser '81]

some cells missing, all cells present, in-order
some cells out-of-order [1]

which can be used to make...

[6]
cleaned, ordered

notebooks
(preserve cell

[7]

boundaries and
outputs)

[10]
versioned
results
(slice all cell

[11]

versions)

W] UOIINDBXD

[12]

Evaluating Code Gathering Tools

Q. How do data analysts distill code during the
process of exploratory data analysis?

A Qualitative Study of Gathering

Participants: N = 12 protessional data analysts

Cleaning Task x 2: Clean a computational notebook,
with and without code gathering tools.

Exploration: Rank movies in from a movies dataset.
Use code gathering tools as you wish.

Q. How do data analysts distill code during
the process of exploratory data analysis?

Gathering to a notebook

Highlighting dependencies

“"\Not useful

Version browser

No basis to answer

participants

Participants described gathering to a notebook as "beautiful" and
"amazing": it "hits the nail on the head."

Some Observed Uses of Gathering Tools

"Finishing moves" Gathering for multiple audiences

e = ..E':'-uo'c. 1 =
- P
o
° e . ° ..& ..
S s . . 4'.'33:
LX) *
esee 0 a
) o %"
® ®wmees o
e .
o
=
w0

Lightweight branching Creating personal references

Needs for distilling notebooks

Picking a subset of cells p1-r121...
and removing the rest (s, P10-12.

"| picked a plot that looked interesting and, if you think of a
dependency tree of cells, walked backwards and removed
everything that wasn’t necessary.”

... And many additional stages:

writing documentation [P1, P5, P7, P10, P11] merging cells [P11]

polishing visualizations [P1, P¢] restructuring code [P3, P4, P, P12

integrating with version control [P7]

Takeaways from Study

Code gathering tools can be picked up quickly and readily
applied to new use cases in notebooks.

Gathering covers an important yet incomplete set of tasks
for distilling notebooks.

b +» ®

File Edit

$ jupyter labextension install nbgather

View Run Kernel Tabs Settings Help

M| Exploratory Data Analysis.i X
B + XOTf » m C Code v

l [20]:

[20]:

clusters = KMeans(n_clusters=2).fit(data).labels_

scatter(petal_length, petal_width, c=clusters)

<matplotlib.collections.PathCollection at 0x1067baf98>

0.5 1

0.0 -

from matplotlib.pyplot import scatter
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().datal:,2:4]
petal_length, petal_width = datal:,0], datal:,1]

petal_length, petal_width = datal[:,1], datal:, 0]

Gather to: & Cells

Notebook @ Version Browser

X Clear

Python3 O

Gather

b +» ®

File Edit

$ jupyter labextension install nbgather

View Run Kernel Tabs Settings Help

M| Exploratory Data Analysis.i X
B + X O » m C Code v

l [20]:

[20]:

clusters = KMeans(n_clusters=2).fit(data).labels_

scatter(petal_length, petal_width, c=clusters)

<matplotlib.collections.PathCollection at 0x1067baf98>

0.5 1

0.0 -

from matplotlib.pyplot import scatter
from sklearn.cluster import KMeans
from sklearn import datasets

data = datasets.load iris().datal:,2:4]
petal_length, petal width = datal:,0], datal:,1]

petal_length, petal_width

datal[:,1], datal:,0]

Gather to: & Cells [M Notebook @ Version Browser X Clear

Also implemented as an
experimental feature in VS Code

Python > Data Science: Enable Gather

Python3 O

Gather

Enable code gathering for single cells in the interactive window

(experimental).

Thesis

Authors can transform existing programs
into sample programs more efhciently and
flexibly when aided by interactive tools
tor selecting, simplifying, supplementing,

and sequencing code.

The Essence of Distillation Tools

< N
Sni t
Author o
gz
Tutorial
Existing - J Sample

Program °rogram

The Essence of Distillation Tools

Snippet

9,

IS

. N
a Interactions
[™ .
select) simplify
Author [supplement] [sequence j
Existing - ~

Program

Tutorial

Sample
Program

The Essence of Distillation Tools

Snippet

9,

IS

.)
a Interactions
[selectj simplify
Author (supplement j [sequencej
e Program Analysis
Existing - ~

Program

Tutorial

Sample
Program

The Essence of Distillation Tools

Efficient, Flexible Authoring

Snippet

9,

IS

ﬁf b | :
a Interactions
[selectj simplify
Author [supplement] [seguence]
6 Program Analysis
Existing - ~

Program

Tutorial

Sample
Program

How do we help authors create
more effective instructions?

Output

Program qualities

Length (lines)

Time spent

Programming environment

Authoring role

Author selections

Slicing assistance

Slicing domain

Help authors replace...

Simplification techniques

simplification options

Program embellishments

Assets

Interactivity for readers

versions

Snippet execution order

Linked edits

. . Sample Live
Snippet Notebook Tutorial project Screencast demo
executable minimal copyable readable robust
b T T I >
1 10 100 1,000
b T T | >
1 min 10 min 1 hour
GOALS
code editor notebook dedicated editor non-interactive
Autonom Unsolicited Subdialogue Fixed subtask Negotiated
utonomous reporting initiation initiative mixed initiative TOOL
BASICS
Select Select Interact with None
statements outputs running program
Slice Interactive None
slice expansion
Interpreter One file, Multiple Multiple Library External
history one language files languages code services
SELECT
Entire External
Statements Classes programs services
Rename Insert Synthesize Generate
identifiers placeholders equivalent code stubs
I T T >
1 show menus / 10 rank options 100
design galleries and recommend
SIMPLIFY
Guards Program Example Exception Log
alternatives data handling statements
. . Console Charts / Screen
Rich text Diagrams output graphs Screenshots recordings

Visualizations Live editing Exercises Version browser
SUPPLEMENT
k T T >
1 10 100
checkpoints continuous recording
. Infer from Infer from Hard-coded
Sequential source program dependencies order

Source program Snippets Outputs Explanations

~— T SEQUENCE

A design space of distillation tools

from Chapter 3 of
Andrew's
dissertation.
oming soon!

A design space of distillation tools

versions : ! !
10 100

checkpoints continuous recording

Snippet execution order Sequential Infer from Inter from Hard-coded

source program dependencies order

A/_\ A &~ —
Linked edits Source program Snippets Outputs Explanations

~— T SEQUENCE

from Chapter 3 of
Andrew's
dissertation.
Coming soon!

Output

Program qualities

Length (lines)

Time spent

Programming environment

Authoring role

Author selections

Slicing assistance

Slicing domain

Help authors replace...

Simplification techniques

simplification options

Program embellishments

Assets

Interactivity for readers

versions

Snippet execution order

Linked edits

. . Sample Live
Snippet Notebook Tutorial project Screencast demo
executable minimal copyable readable robust
b T T I >
1 10 100 1,000
b T T | >
1 min 10 min 1 hour
GOALS
code editor notebook dedicated editor non-interactive
Autonom Unsolicited Subdialogue Fixed subtask Negotiated
utonomous reporting initiation initiative mixed initiative TOOL
BASICS
Select Select Interact with None
statements outputs running program
Slice Interactive None
slice expansion
Interpreter One file, Multiple Multiple Library External
history one language files languages code services
SELECT
Entire External
Statements Classes programs services
Rename Insert Synthesize Generate
identifiers placeholders equivalent code stubs
I T T >
1 show menus / 10 rank options 100
design galleries and recommend
SIMPLIFY
Guards Program Example Exception Log
alternatives data handling statements
. . Console Charts / Screen
Rich text Diagrams output graphs Screenshots recordings

Visualizations Live editing Exercises Version browser
SUPPLEMENT
k T T >
1 10 100
checkpoints continuous recording
. Infer from Infer from Hard-coded
Sequential source program dependencies order

Source program Snippets Outputs Explanations

~— T SEQUENCE

A design space of distillation tools

from Chapter 3 of
Andrew's
dissertation.
oming soon!

Output

Program qualities

Length (lines)

Time spent

Programming environment

Authoring role

Author selections

Slicing assistance

Slicing domain

Help authors replace...

Simplification techniques

simplification options

Program embellishments

Assets

Interactivity for readers

versions

Snippet execution order

Linked edits

CodeScoop

. . Sample Live
Snippet Notebook Tutorial project Screencast demo
executable minimal copyable readable robust
\ | | | |] >
3 1 | 1 =
1 10 100 1,000
I] []
I T T I o
1 min 10 min 1 hour
GOALS
code editor notebook dedicated editor non-interactive
Autonom Unsolicited Subdialogue Fixed subtask Negotiated
utonomous reporting initiation initiative mixed initiative TOOL
BASICS
Select Select Interact with None
statements outputs running program
; Interactive
slice slice expansion None
Interpreter One file, Multiple Multiple Library External
history one language files languages code services
SELECT
Entire External
Statements Classes programs services
Rename Insert Synthesize Generate
identifiers placeholders equivalent code stubs
] | .
¥ I 1
1 show menus / 10 rank options 100
design galleries and recommend
SIMPLIFY
Guards Program Example Exception Log
alternatives data handling statements
. . Console Charts / Screen
Rich text Diagrams output graphs Screenshots recordings

Visualizations Live editing Exercises Version browser
SUPPLEMENT
o | >
L) I I >
1 10 100
checkpoints continuous recording

. Infer from Infer from Hard-coded

Sequential source program dependencies order

Source program Snippets Outputs Explanations

" SEQUENCE

Code gathering tools Torii

A design space of distillation tools

from Chapter 3 of
Andrew's
dissertation.
oming soon!

Mixed-
Inititative
program
synthesis

The design of
explorable
tutorials

Output

Program qualities

Length (lines)

Time spent

Programming environment

Authoring role

Author selections

Slicing assistance

Slicing domain

Help authors replace...

Simplification techniques

simplification options

Program embellishments

Assets

Interactivity for readers

versions

Snippet execution order

Linked edits

CodeScoop

. . Sample Live
Snippet Notebook Tutorial project Screencast demo
executable minimal copyable readable robust
\ | | | |] >
¥ | | I o
1 10 100 1,000
[] []

| | 1
1 min 10 min 1 hour
code editor notebook dedicated editor non-interactive

Autonomous Ynsolicited _Sl._ll:_)diglogue Fixgd _subtask Negotiated
reporting initiation initiative mixed initiative

Select Select Interact with None
statements outputs running program
: Interactive

sl slice expansion None

Interpreter One file, Multiple Multiple Library External

history one language files languages code services
External

Statements Classes services

Rename Insert Synthesize Generate
identifiers placeholders equivalent code stubs

T
100

show menus / 10 rank options
design galleries and recommend
Guards Program Example Exception Log
alternatives data handling statements

Console Charts / Screenshots Screen_

Rich text Diagrams /o — acarding

Visualizations Live editing Exercises Version browser
o | .
L) I I >
1 10 100
checkpoints continuous recording
. Infer from Infer from Hard-coded
Sequential source program dependencies order

Source program Snippets Outputs Explanations
_/ \/

Code gathering tools

GOALS

TOOL
BASICS

SELECT

IFY

SUPPLEMENT

SEQUENCE

Torii

Natural
language

A design space of distillation tools

generation

from Chapter 3 of

Andrew's

dissertation.
Coming soon!

The distillation of explorable tutorials

Empirical
Questions

What are

effective
patterns for
creating
explroables?

In the next section, you will start combining these Core Components to learn about how React works.
Have a play with them here now!

Hello World A Expo
b React ‘frea Some text

Lmport Keact S toxt

Lmport View, Text, Image, ScrollView, TextInput from UL SVIONS, oA

export default function
retcurn
< xt>Some text</Text> O

.Some more text- t> v

You can type in me

@ 05 Android m

Because React Native uses the same API structure as React components, you'll need to understand

React component APIs to get started. The next section makes for a quick introduction or refresher on

Technical
Questions

How can tools
help authors
distill
programs into
Instructive
explorables?

ken ¢ given the history (¢1, ..., tx_1):

N
p(tlatQa' ..)tN) = Hp(tk | tl’t2’° . atk—l)'
k=1

Recent state-of-the-art neural language models
(Jozefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation x,fM (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-

. T :
sentation h ﬁM where j = 1, ..., L. The top layer

_)
LSTM output, h ﬁI‘L"’ , is used to predict the next
token ¢;; with a Softmax layer.
A backward LM is similar to a forward LM, ex-

cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

N

P(t1,ta, - tn) = [] Ptk | Birrs tisas -5).

The distillation of scientific discourse

each token i, a L-layer biLM computes a set of
2L + 1 representations

- .
Ry = {xEM WM WEM|j=1,.. L)

(| j=0,...,L},

where hig' is the token layer and hp’f =

[ﬁﬁ’f ; Fﬁ?’f |, for each biLSTM layer.

For inclusion in a downstream model, ELLMo
collapses all layers in R into a single vector,
ELMo, = E(Ri;©.). In the simplest case,
ELMo just selects the top layer, E(Ry) = hi¥,
as in TaglLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a

task specific weighting of all biLM layers:

ELMo;** = E(Ry; ©')

In (1), st@s* are softmax-normalized weights and
the scalar parameter v*** allows the task model to

an epilogue to the Ph.D. with Berkeley and /A2 .

UNIVERSITY OF CALIFORNIA

laviar naartrmalizatinn (Ra aft al Y9DT1AN ta aarh 1T N

A plug for my dissertation

.......................... &> @ mentalmode

(:)beacons

identifiers

structures SORT

program @ plans

Snippet number I 835. The firs.t. part of the f()ll()wiug code is part of I]j\s inner
loop, so we don’t want to waste any time. The current active node,
namely node r, contains the line number that will be considered
next. At the end of the list we have arranged the data structure so
that » = last_active and line_number (last_active) > old_l.

(If a line number class has ended, create new active nodes
. for the best feasible breaks in that class; then
Smppet name return if r = last_active, otherwise compute the new
line_width 835) =

begin [< line_-number(r);

if [> old_l then
begin {now we are no longer in the inner loop }
if (minimum_demerits < awful_bad) N\

((old-l # easy-line) V (r = last_active)) then

r'Efe rences to { Create new active nodes for the best feasible breaks just
. found 836);
other Smppets if r = last_active then return;
(Compute the new line width 850);
end;
end

This code is used in section 829.

Figure 0.1: A snippet of the TgX program (Knuth 1986)

program
knowledge knowledge

" for M in 0. .N: ——___,<:>
o sum += list[|Ji]
................... ¥ SUM O
comments v \\\\‘

domain

description

code

Chapter 2: How programmers
read, use, write, and should write

sample programs.

Chapter 3: A design space of
tools tor authoring ana
presenting programs, from the

'80s until now.

Chapters 4-6 describe the projects from this talk

Thank you to my
mentors and
collaborators!

From Berkeley to

Microsott Research,
Google, Al2, ana
beyona.

Thank you to my
mentors and
collaborators!

From Berkeley to

Microsott Research,
Google, Al2, ana
beyona.

Questions?

Andrew Head
UC Berkeley

o

|_é
i

)

"

... in practice, experience shows that it is
very unlikely that the output of a computer
will ever be more readable than its input,
except in such trivial but important aspects
as improved indentation."

Tony Hoare, Hints on Programming
Language Design, 1974

