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Though nationally-representative surveys like the 
Demographic and Health Surveys requires visits to more 
than a year and tens of millions of dollars to complete.



Measuring Development Outcomes from 
Existing Data Sources

Call Details Records 
Blumenstock et al. 2015

Nighttime Luminosity 
Chen and Nordhaus 2011

Daytime Satellite Images 
Jean et al. 2016



Household assets Mobile phone  
ownership

Access to 
electricity

Level of education Mosquito nets Access to 
drinking water

What Can You Estimate Using Daytime Satellite Images?



X ↦ y



X ↦ y
• household assets 
• household 

education 
• hemoglobin level 
• ... and 8 more

1 km 
400px Deep neural network + 

supervised learning on features



Estimating "Human Development"
We estimate Demographic and Health Surveys (DHS) Survey Data: 
• Large-scale (thousands of surveyed households per country) 
• Surveys are nationally representative

Indicators of development include: 
• Continuous-scale asset index 
• Level of education attained 
• Time to reach a source of drinking water 
• Average hemoglobin level 
• Average weight-for-height percentile 
• ...

492 "clusters" of surveyed 
households in Rwanda



Daytime Satellite Imagery
We fetched 10,000s of daytime satellite images for 4 countries (2 outside 
sub-Saharan Africa), using the Google Static Maps API.

Size: 1 km2 
Resolution: 400×400px
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Estimating Development from Satellite Images
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Estimating Wealth in Sub-Saharan Africa
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Figure S3: Predicted cluster-level asset index from transfer learning approach (y-axis) com-
pared to DHS-measured asset index (x-axis) for 5 countries. Predictions and reported r2 values
in each panel are from 5-fold cross validation. Both axes shown in log-scale. Black line is the best fit line.
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 Reference figures reproduced from Jean et al.,

“Combining satellite imagery and machine learning to predict poverty”, Science.  Reprinted with permission from AAAS.
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Estimating Wealth Outside Sub-Saharan Africa
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Figure S3: Predicted cluster-level asset index from transfer learning approach (y-axis) com-
pared to DHS-measured asset index (x-axis) for 5 countries. Predictions and reported r2 values
in each panel are from 5-fold cross validation. Both axes shown in log-scale. Black line is the best fit line.
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This approach works well for estimating wealth in sub-
Saharan African (R2 ≈ 0.55–0.75)


And the approach works pretty well for two countries outside 
sub-Saharan Africa (R2 ≈ 0.5–0.65).


However, the approach does not trivially generalize to other 
measures of human development (R2 ≈ -0.02–0.65).

Taking Stock of Estimating 
Development with Satellite Imagery



• Insufficient visual signal?  Satellite images may lack cues for 
predicting more "invisible" measures of development


• Noise by design: Ground truth data has built-in noise


• Hard-to-learn features? Other methods to define features may 
be more suitable (e.g., Gros and Tiecke, for population density)

Are There Fundamental Obstacles to Estimating 
Indicators using Satellite Images?



• Neural Network Tuning: Another categorical variable 
for tuning the network (besides night-time luminosity)


• Machine learning design: network architecture, 
hyperparameters, non-linear model, data 
augmentation, image resolution

Estimation Might Improve With Additional Effort



This exact framework—retraining a deep neural network on night-
lights data, and then using those features to predict the wealth of 
small regions in sub-Saharan African—shows promise even 
outside sub-Saharan Africa.


Though it cannot be applied directly to estimating arbitrary 
indicators in any country with uniformly good results.

Key Takeaway



Paper: http://tinyurl.com/ictd17-satellites Email: andrewhead@berkeley.edu
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This exact framework—retraining a deep neural network on night-
lights data, and then using those features to predict the wealth of 
small regions in sub-Saharan African—shows promise even 
outside sub-Saharan Africa.


Though it cannot be applied directly to estimating arbitrary 
indicators in any country with uniformly good results.
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Figure S3: Predicted cluster-level asset index from transfer learning approach (y-axis) com-
pared to DHS-measured asset index (x-axis) for 5 countries. Predictions and reported r2 values
in each panel are from 5-fold cross validation. Both axes shown in log-scale. Black line is the best fit line.
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Replicating Nigeria Wealth Estimation

 Reference figures reproduced from Jean et al.,

“Combining satellite imagery and machine learning to predict poverty”, Science.  Reprinted with permission from AAAS.
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A Brief Fine-Tuning Experiment


