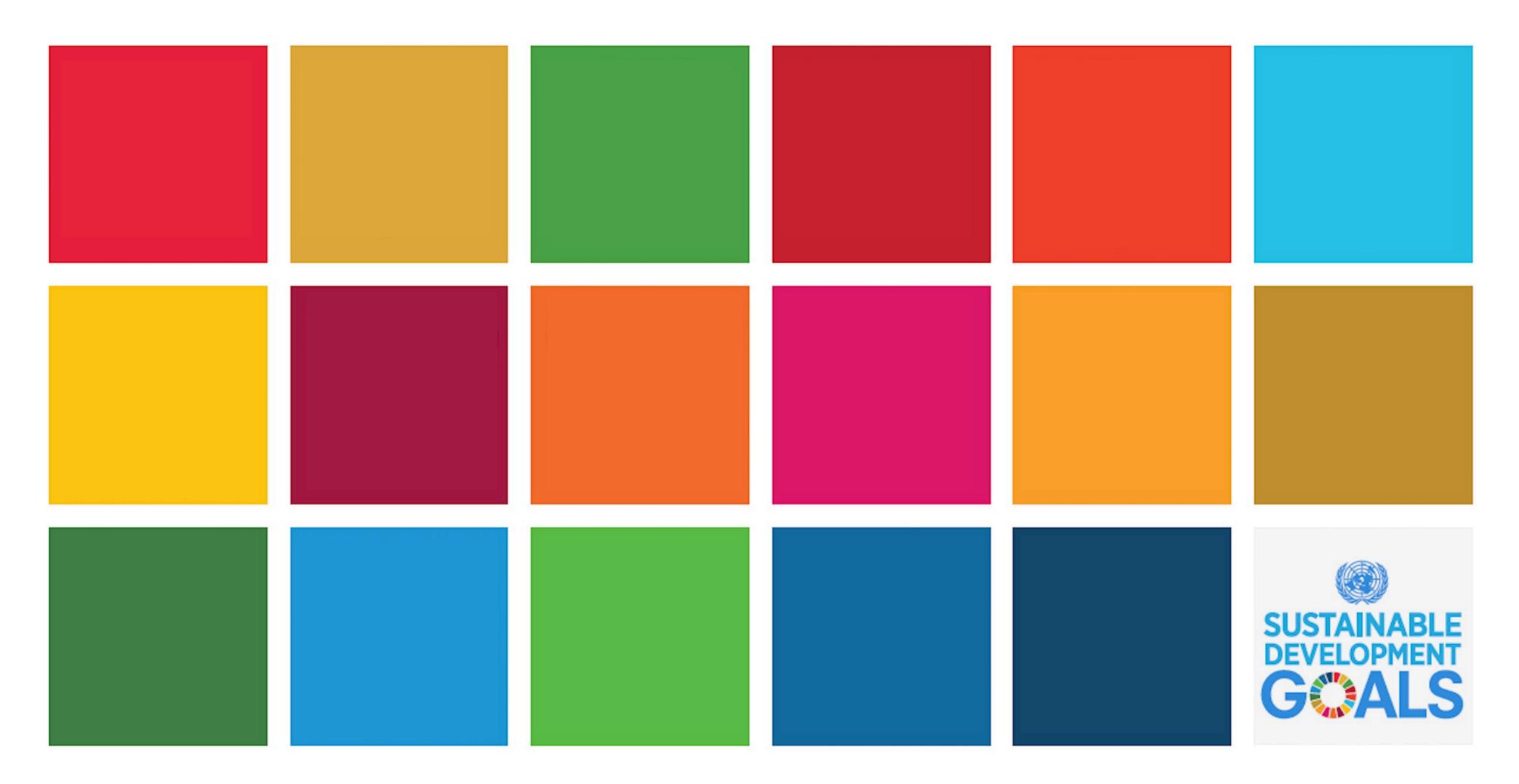


Can Human Development Be Measured with Satellite Imagery?

Andrew Head, Mélanie Manguin, Nhat Tran, and Joshua A. Blumenstock **UC Berkeley**



SUSTAINABLE GEVELOPMENT GEVELOPMENT

SUSTAINABLE GEVELOPMENT GEVELOPMENT

SUSTAINABLE GEVELOPMENT GEVELOPMENT

Quality, accessible, timely and reliable disaggregated data will be needed to help with the measurement of progress and to ensure that no one is left behind.

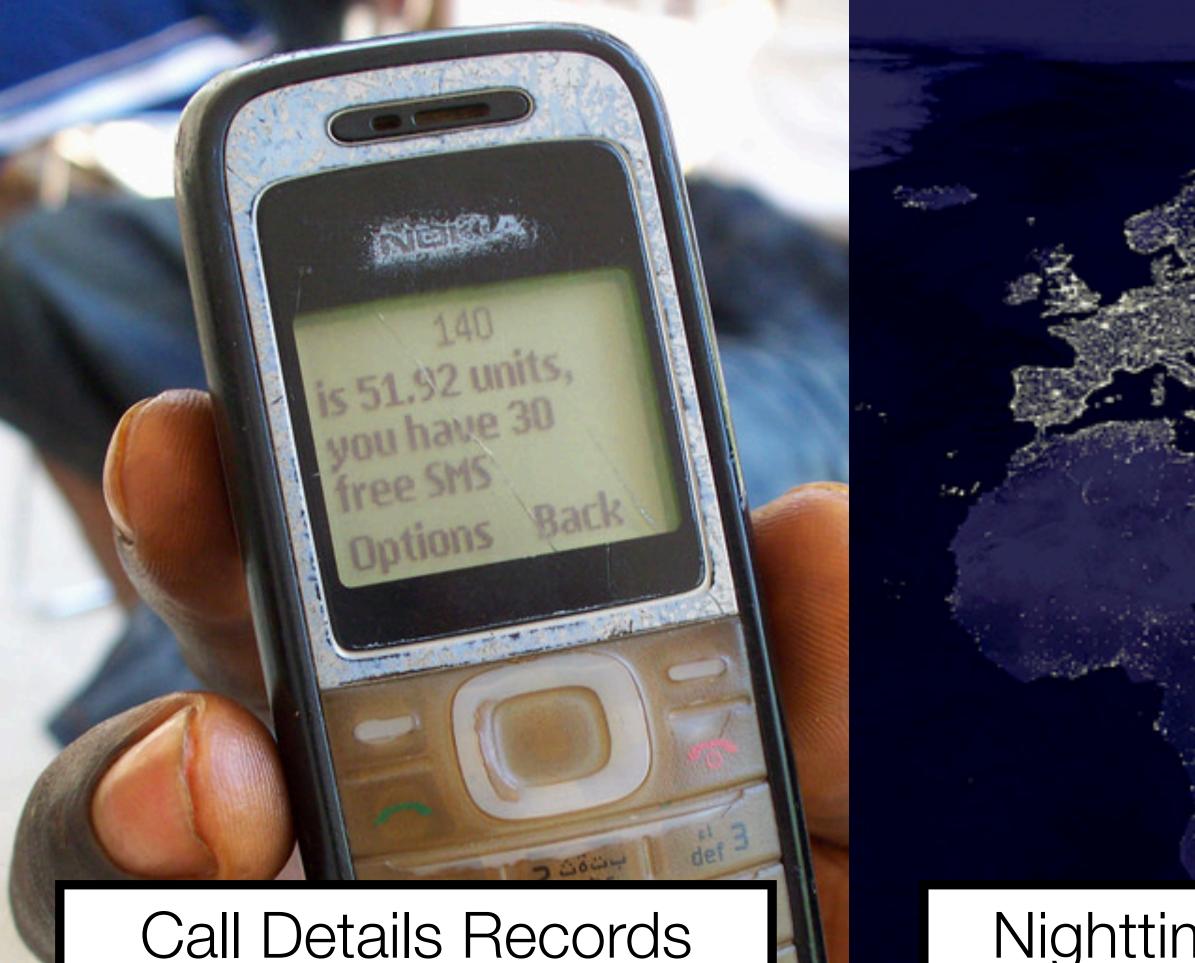
Transforming our world: the 2030 Agenda for Sustainable Development United Nations

Quality, accessible, timely and reliable disaggregated data will be needed to help with the measurement of progress and to ensure that no one is left behind.

Transforming our world: the 2030 Agenda for Sustainable Development United Nations

Though nationally-representative surveys like the Demographic and Health Surveys requires visits to **more than a year and tens of millions of dollars** to complete.

Measuring Development Outcomes from Existing Data Sources



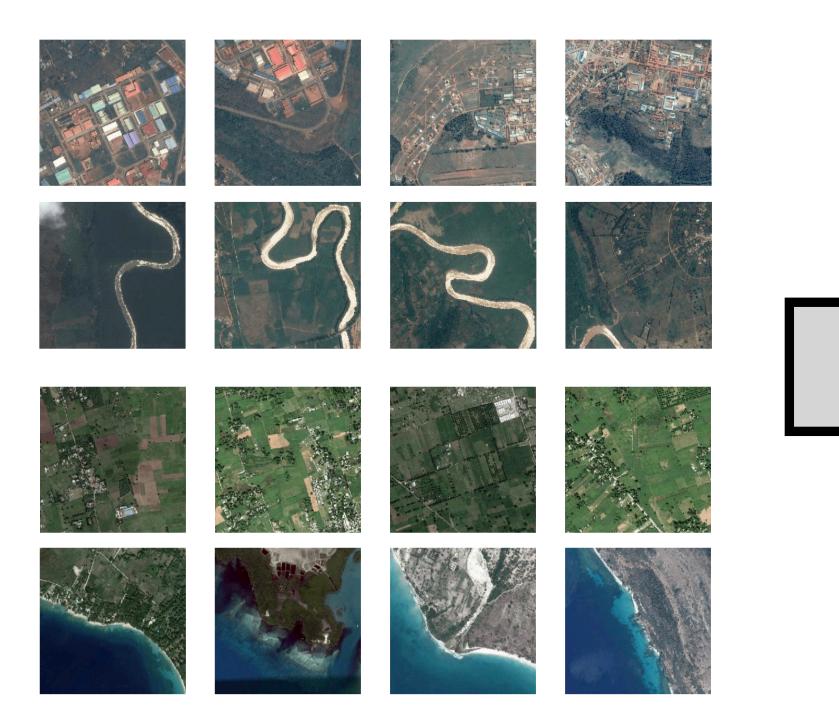
Blumenstock et al. 2015

Daytime Satellite Images

Jean et al. 2016

Nighttime Luminosity Chen and Nordhaus 2011

What Can You Estimate Using Daytime Satellite Images?

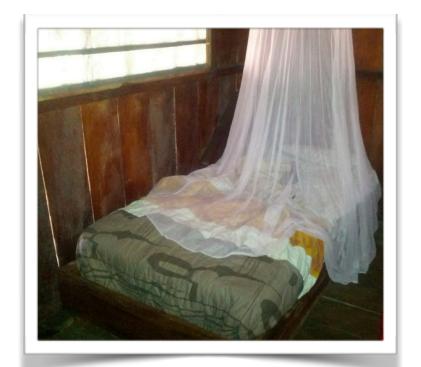


Household assets

Mobile phone ownership

Access to electricity

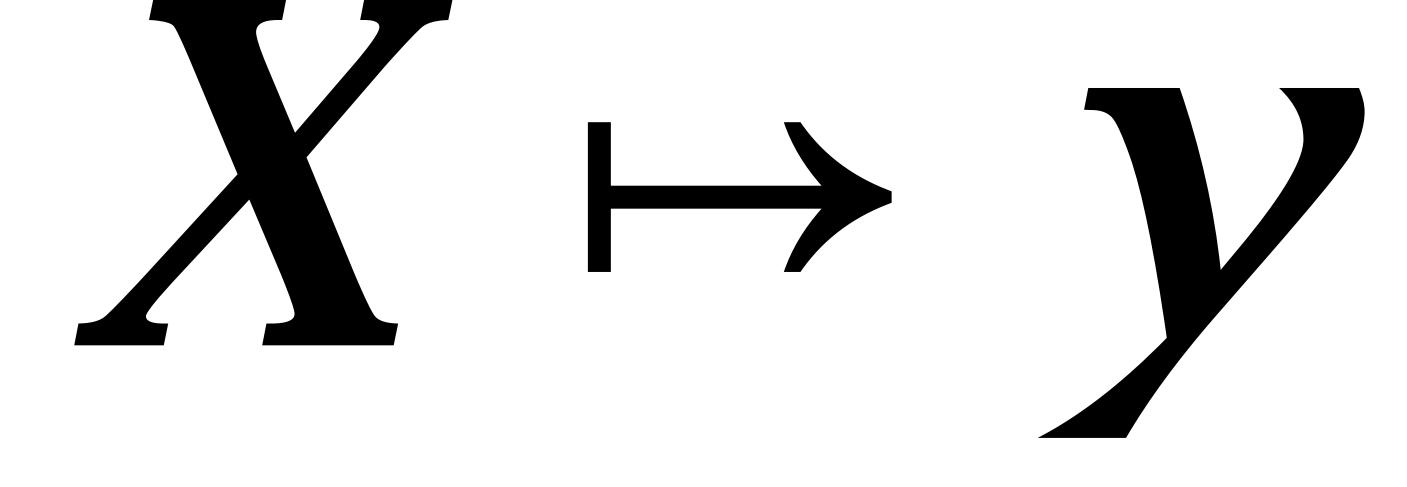
Level of education

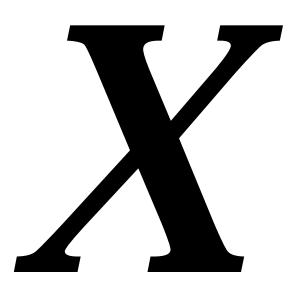


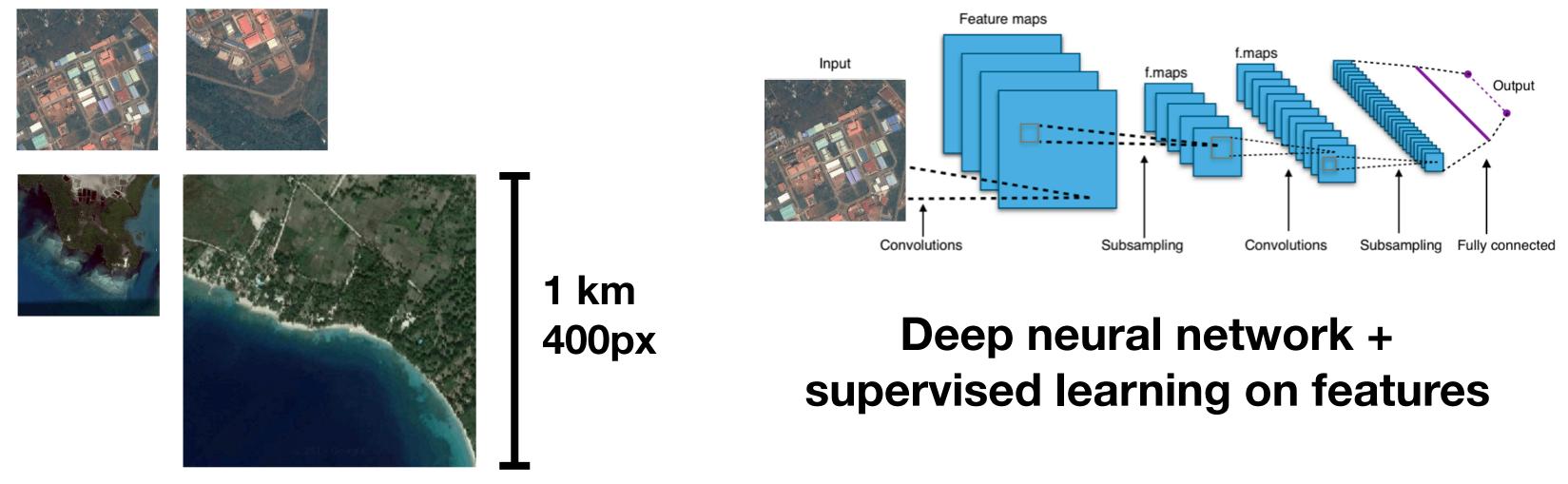
Mosquito nets

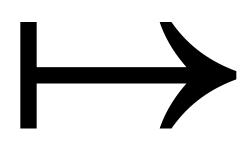
Access to drinking water

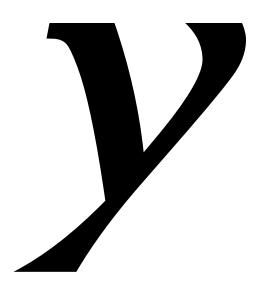












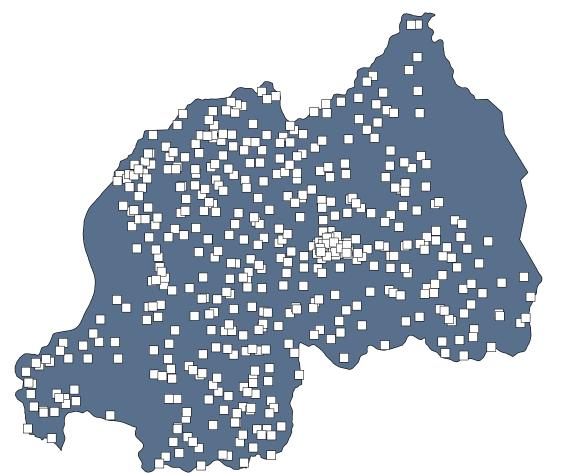
- household assets
- household education

- hemoglobin level
 - ... and 8 more

Estimating "Human Development"

- We estimate Demographic and Health Surveys (DHS) Survey Data: Large-scale (thousands of surveyed households per country) • Surveys are nationally representative

492 "clusters" of surveyed households in Rwanda

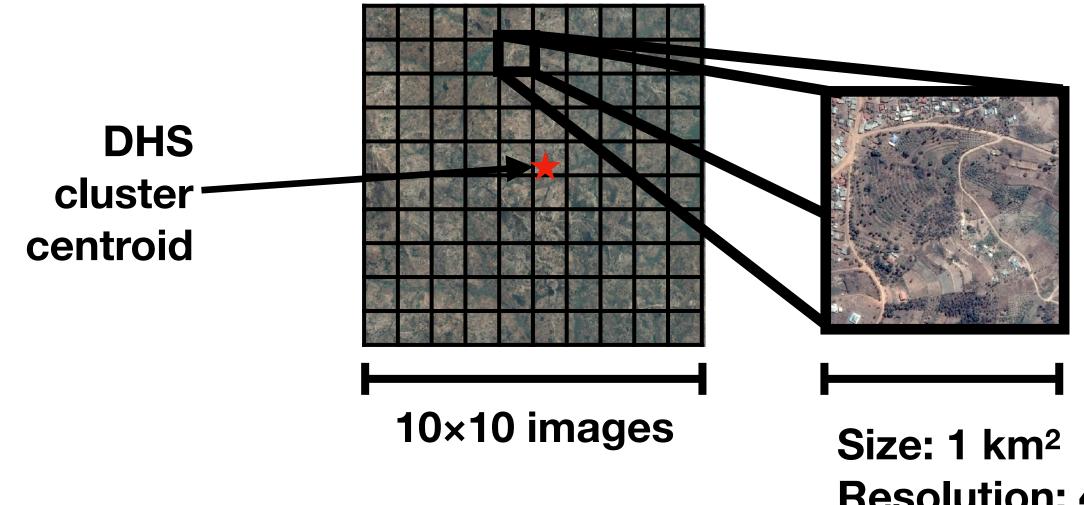


- Continuous-scale asset index
- Level of education attained
- Time to reach a source of drinking water
- Average hemoglobin level
- Average weight-for-height percentile

Indicators of development include:

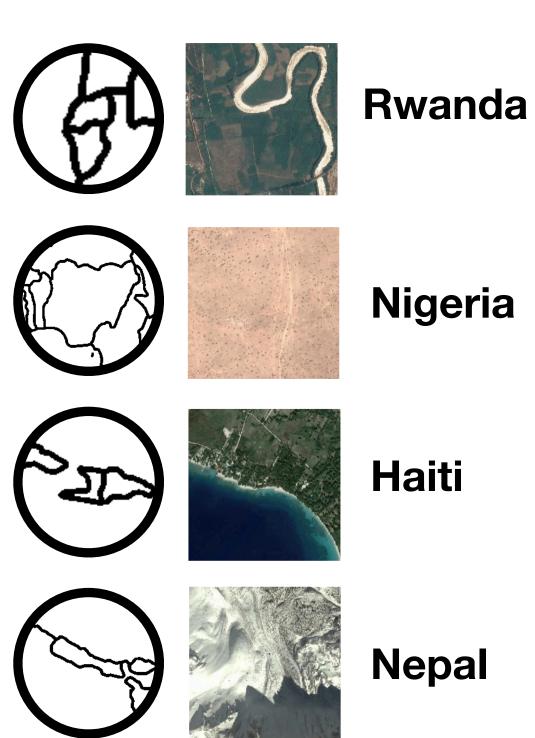
Daytime Satellite Imagery

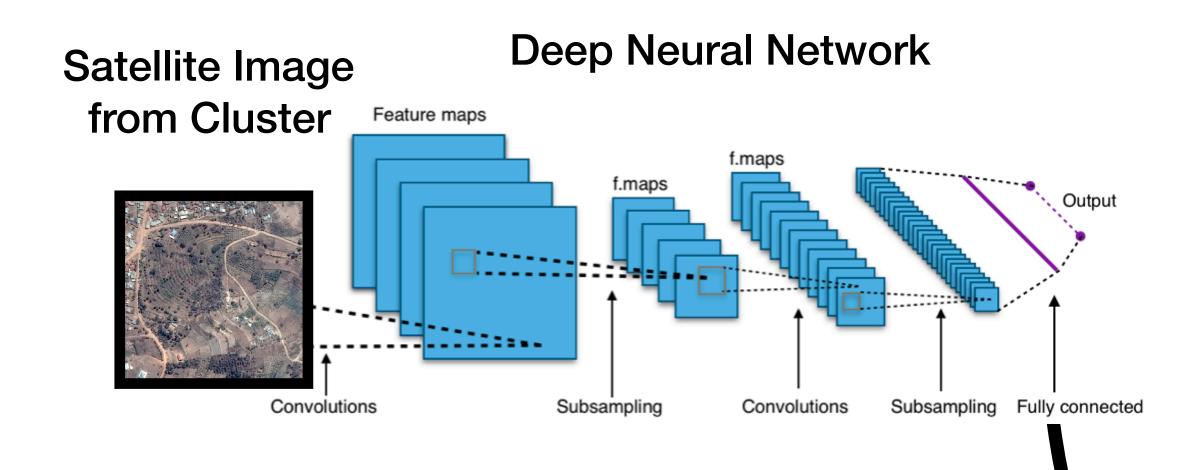
sub-Saharan Africa), using the Google Static Maps API.

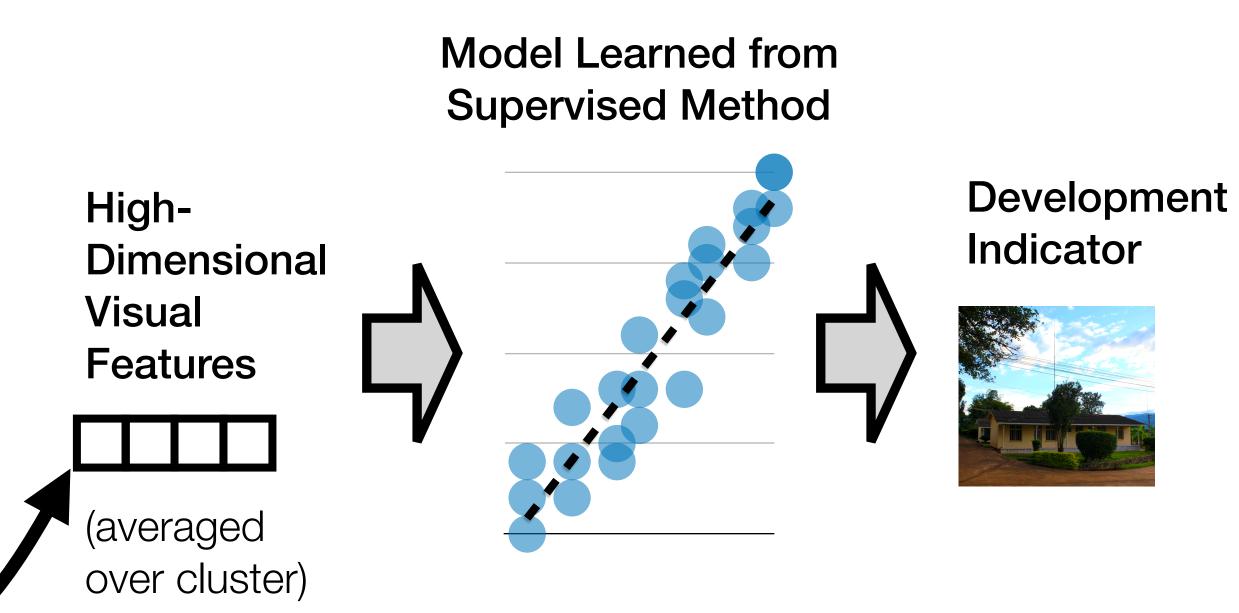


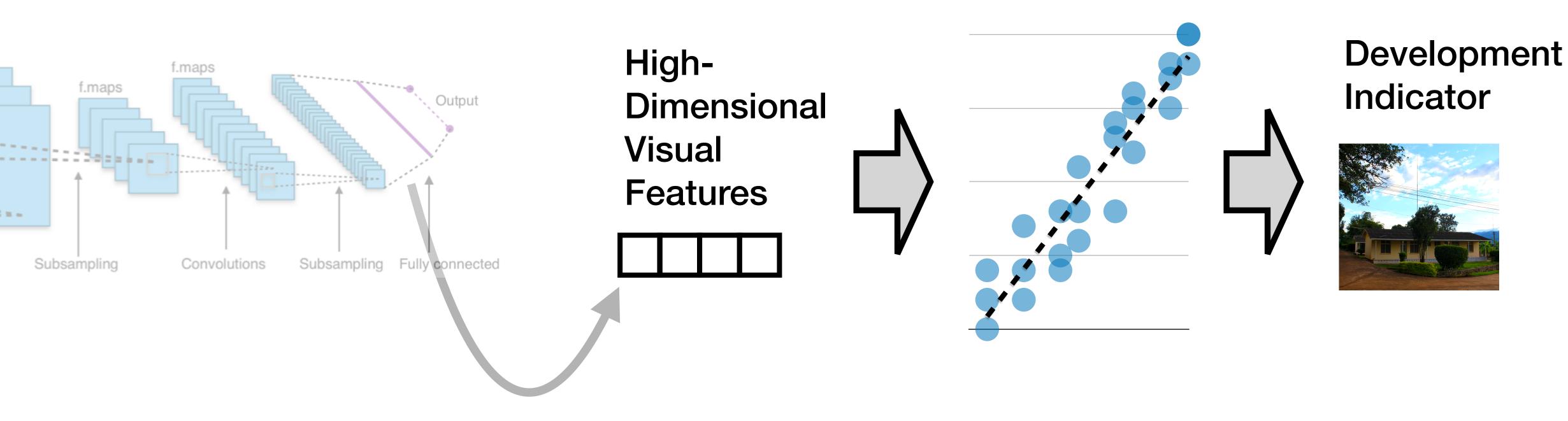
We fetched 10,000s of daytime satellite images for 4 countries (2 outside

Resolution: 400×400px

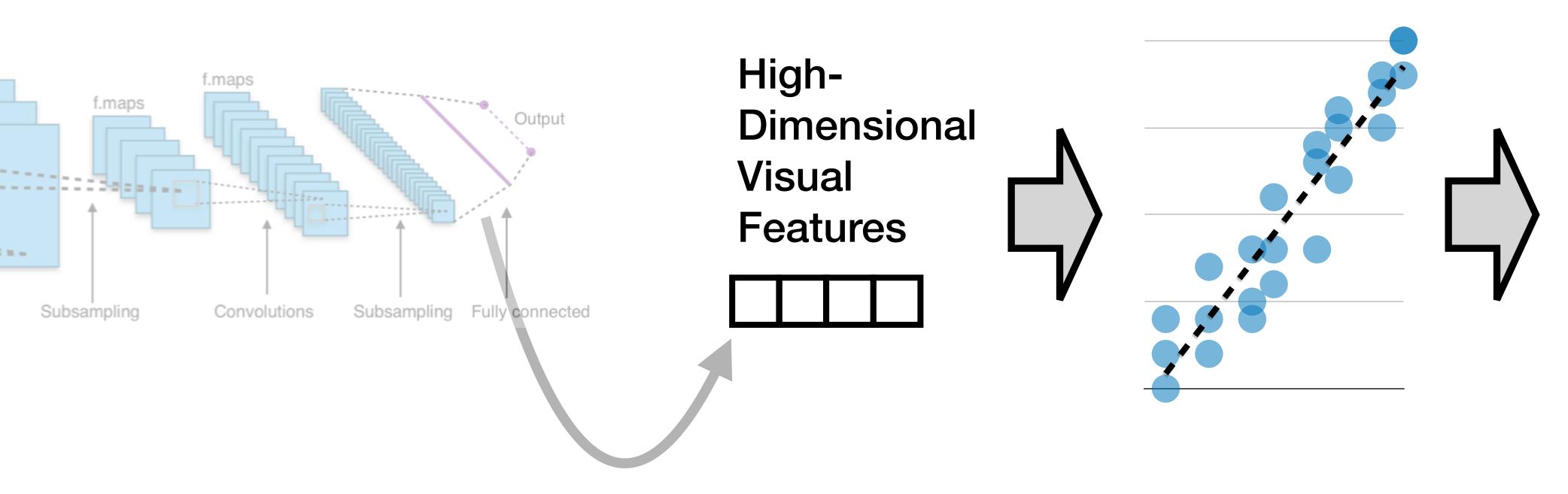








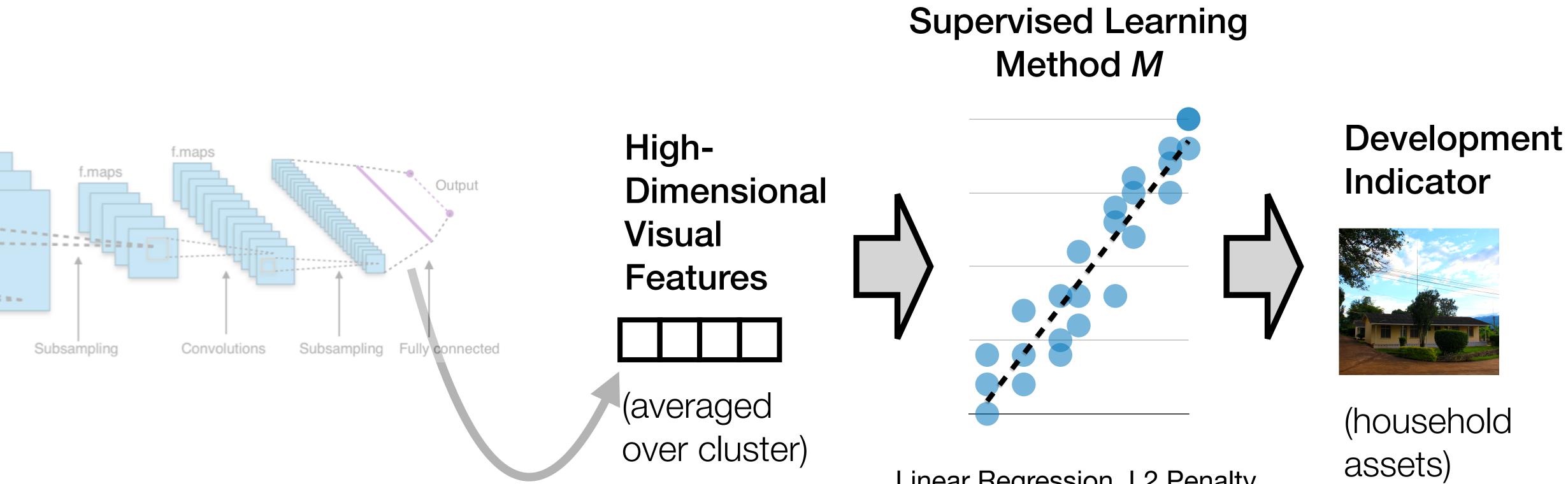
Supervised Learning Method M



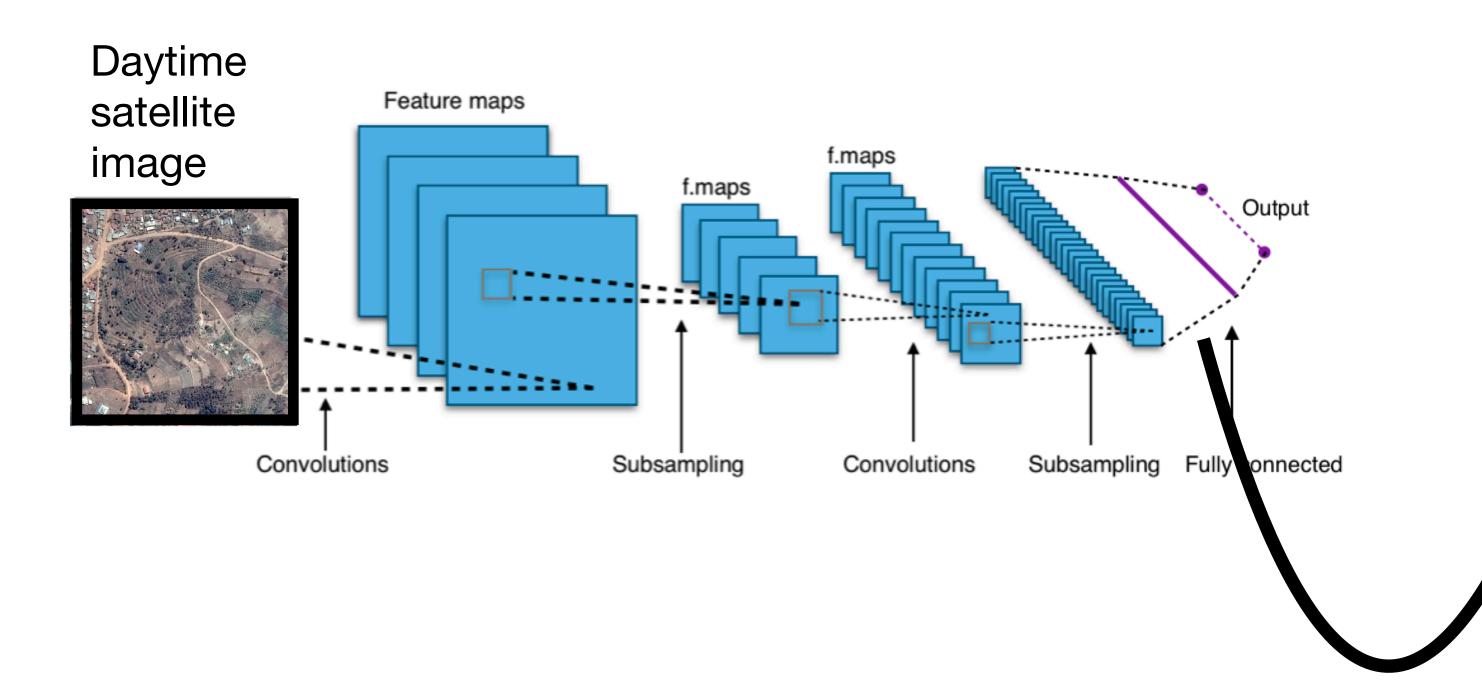
Supervised Learning Method M

Development Indicator

(household assets)

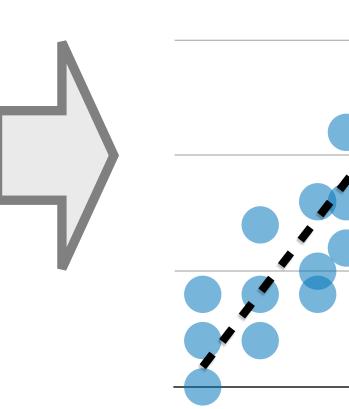


Linear Regression, L2 Penalty, α learned from cross-validation

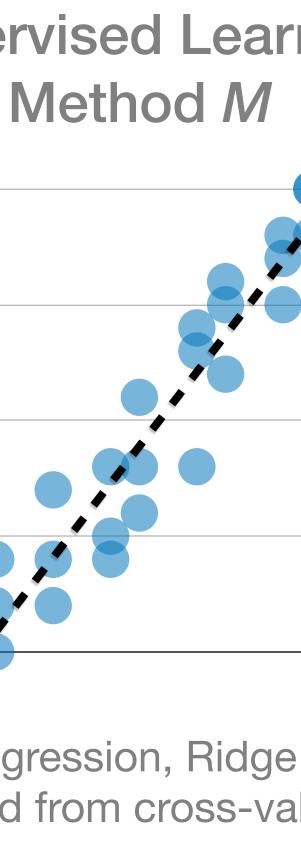


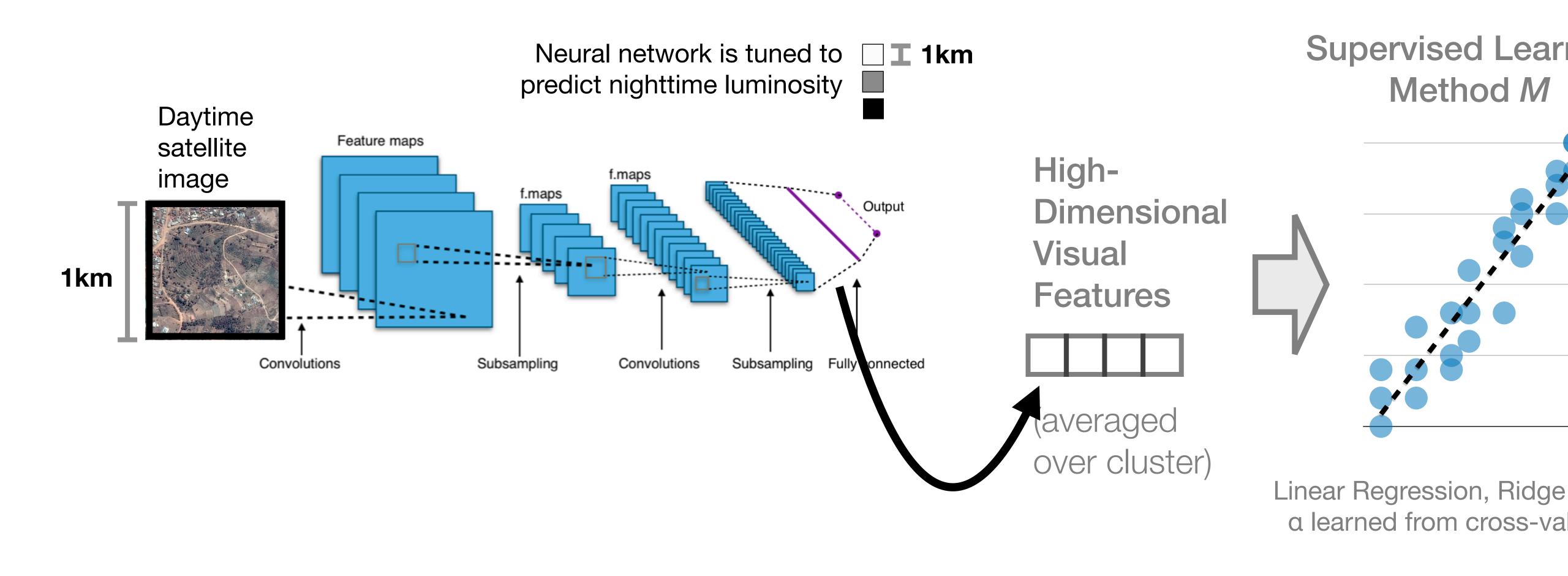
High-Dimensional Visual **Features**

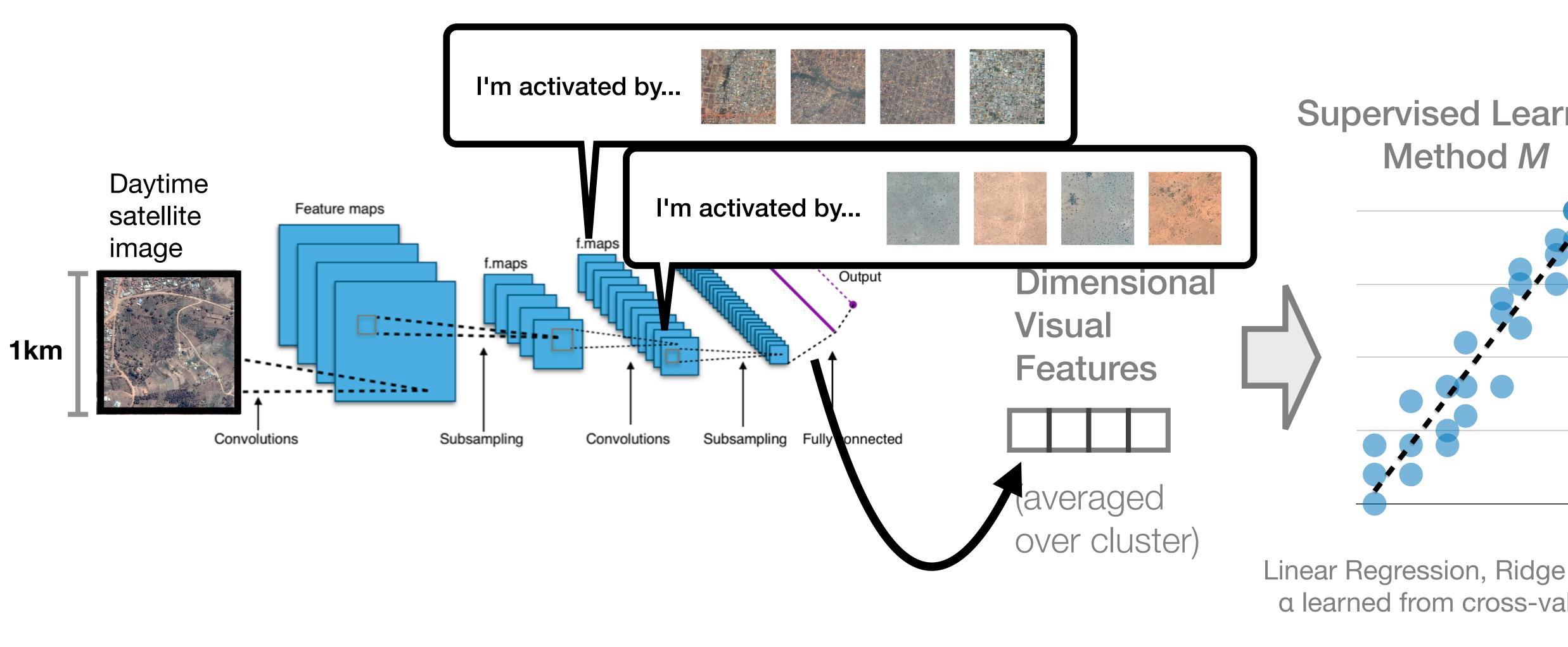
averaged over cluster)

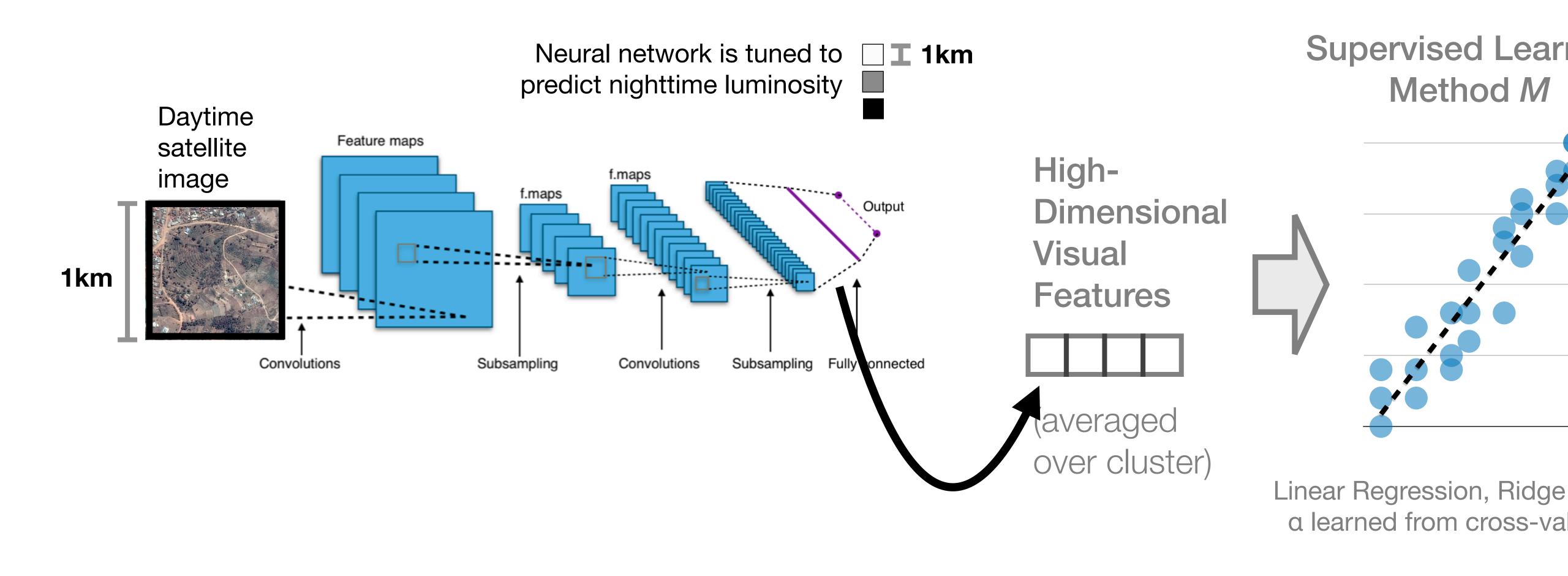


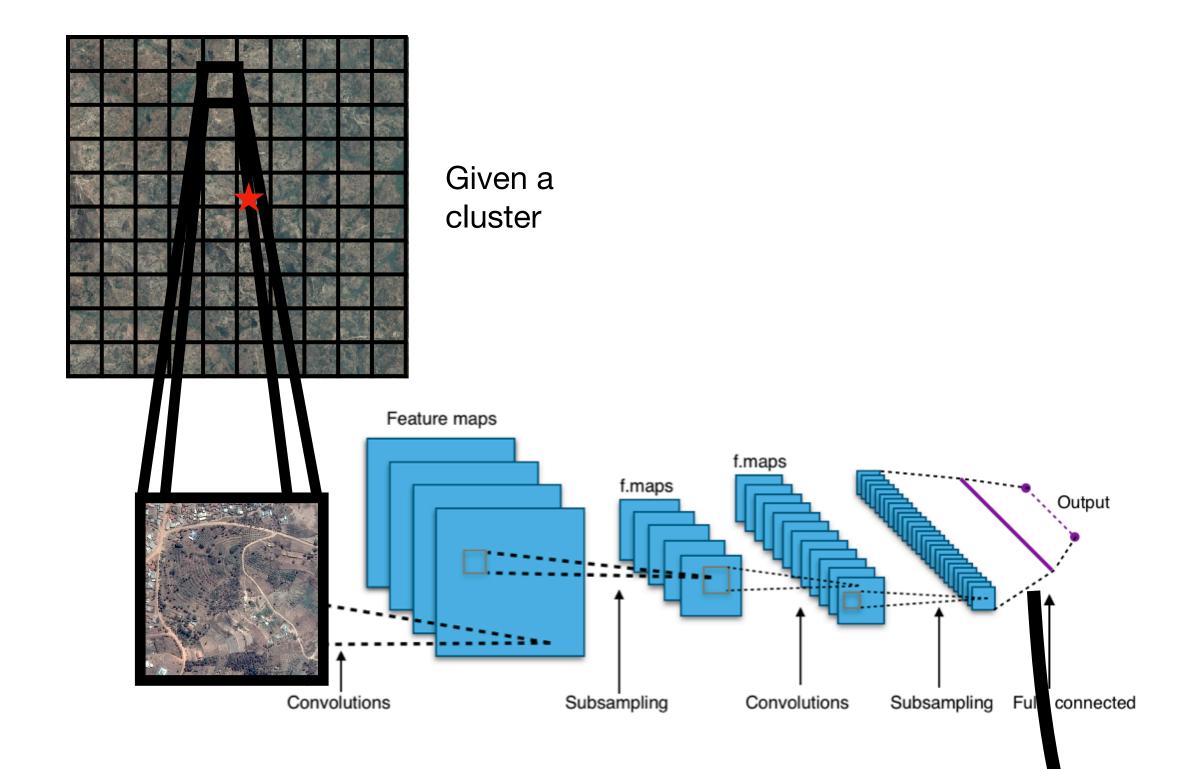
Linear Regression, Ridge a learned from cross-va

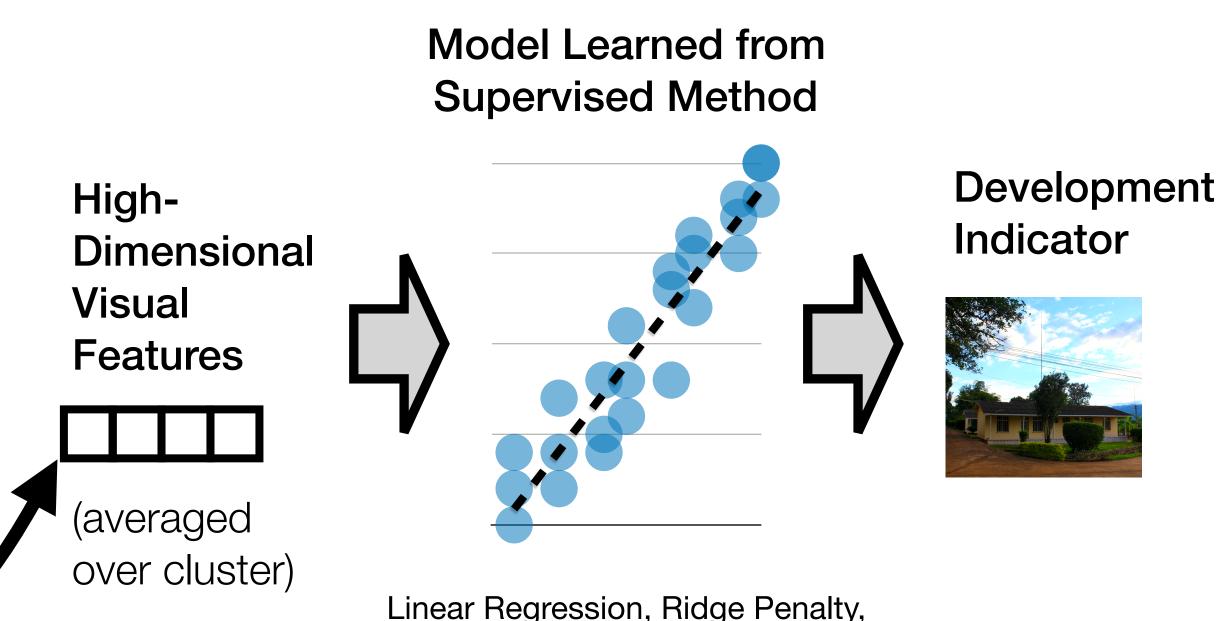






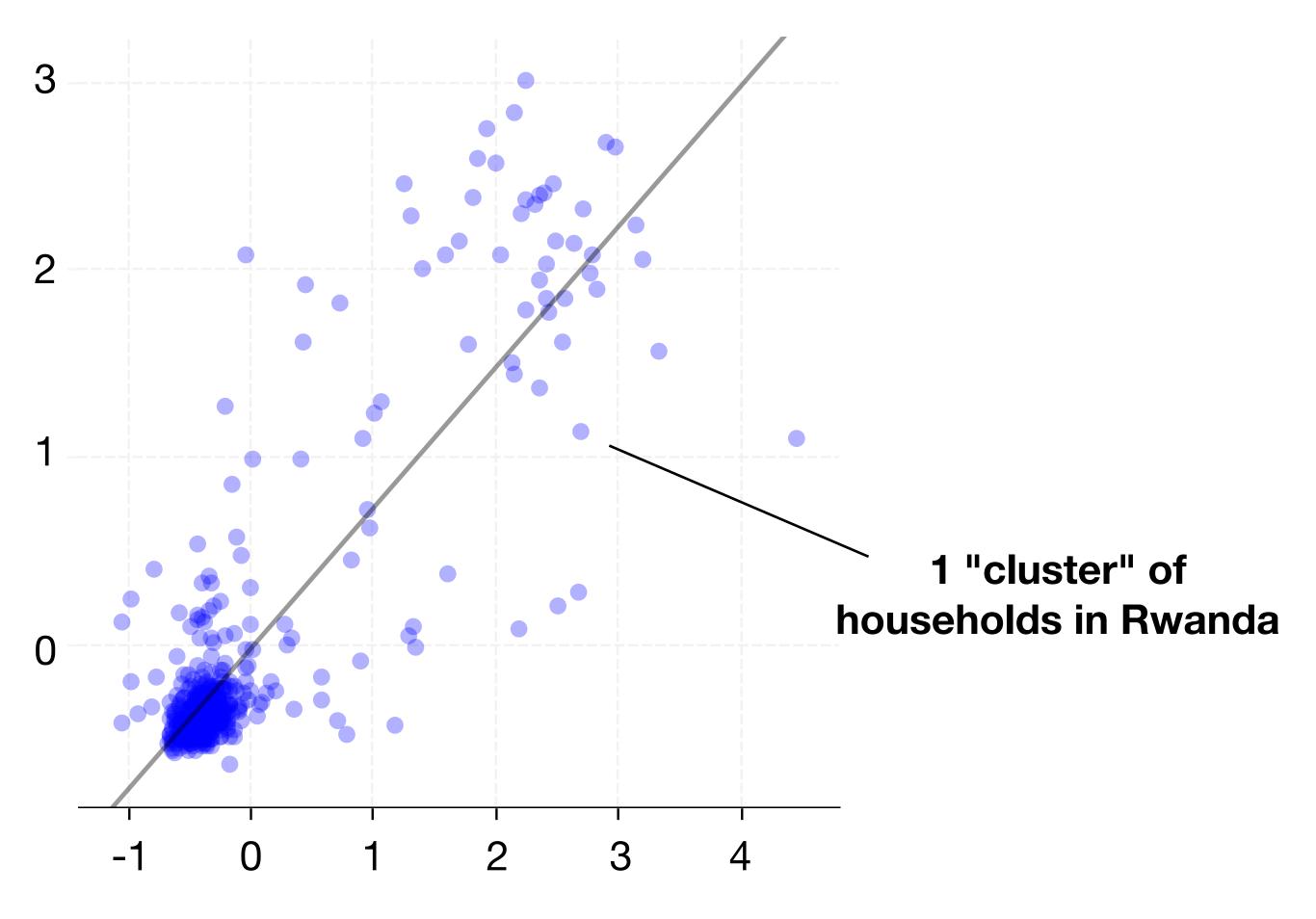






Linear Regression, Ridge Penalty, a learned from cross-validation

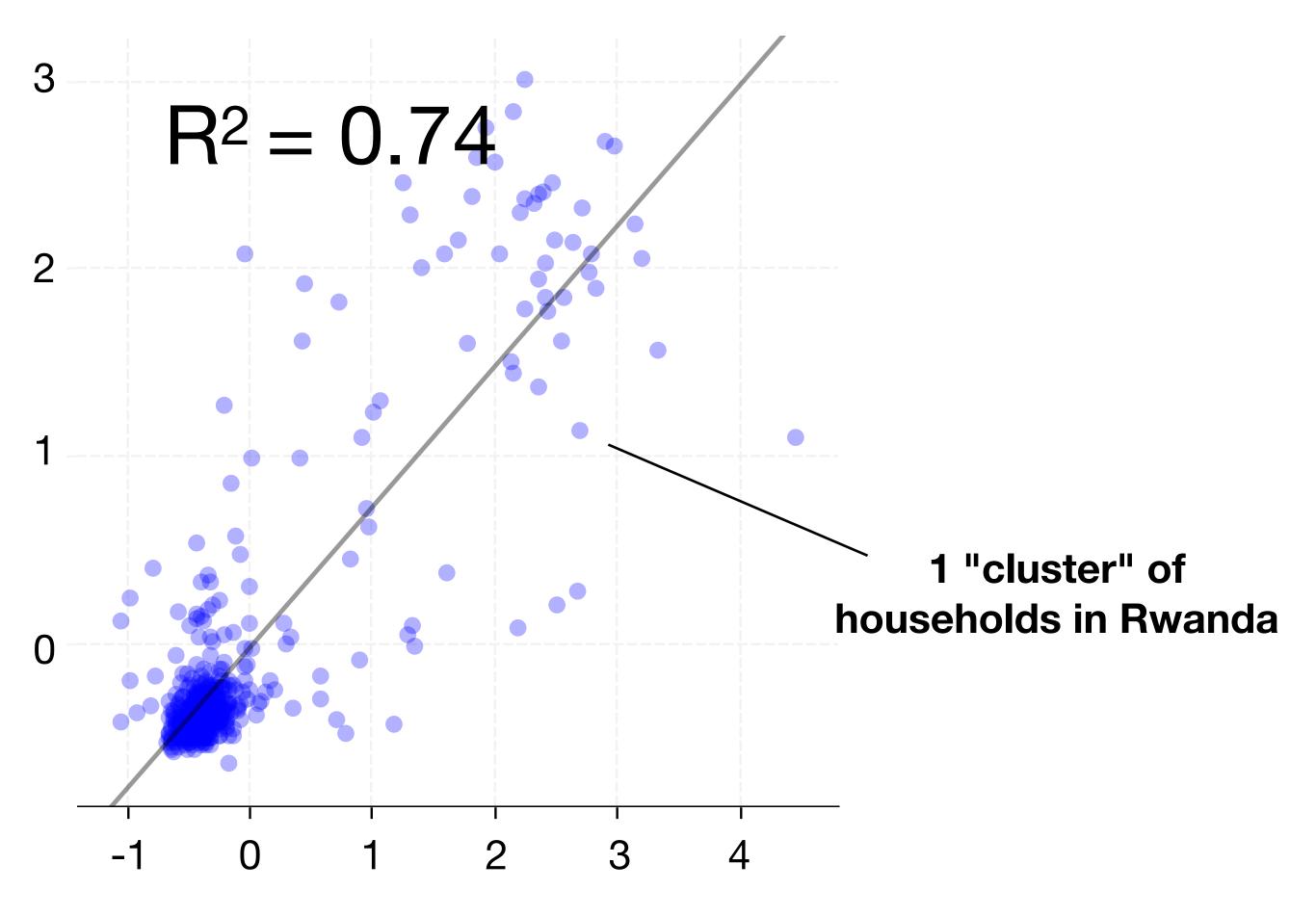
Estimating Wealth in Sub-Saharan Africa



observed (surveyed) asset score

predicted asset score (from satellite + deep learning)

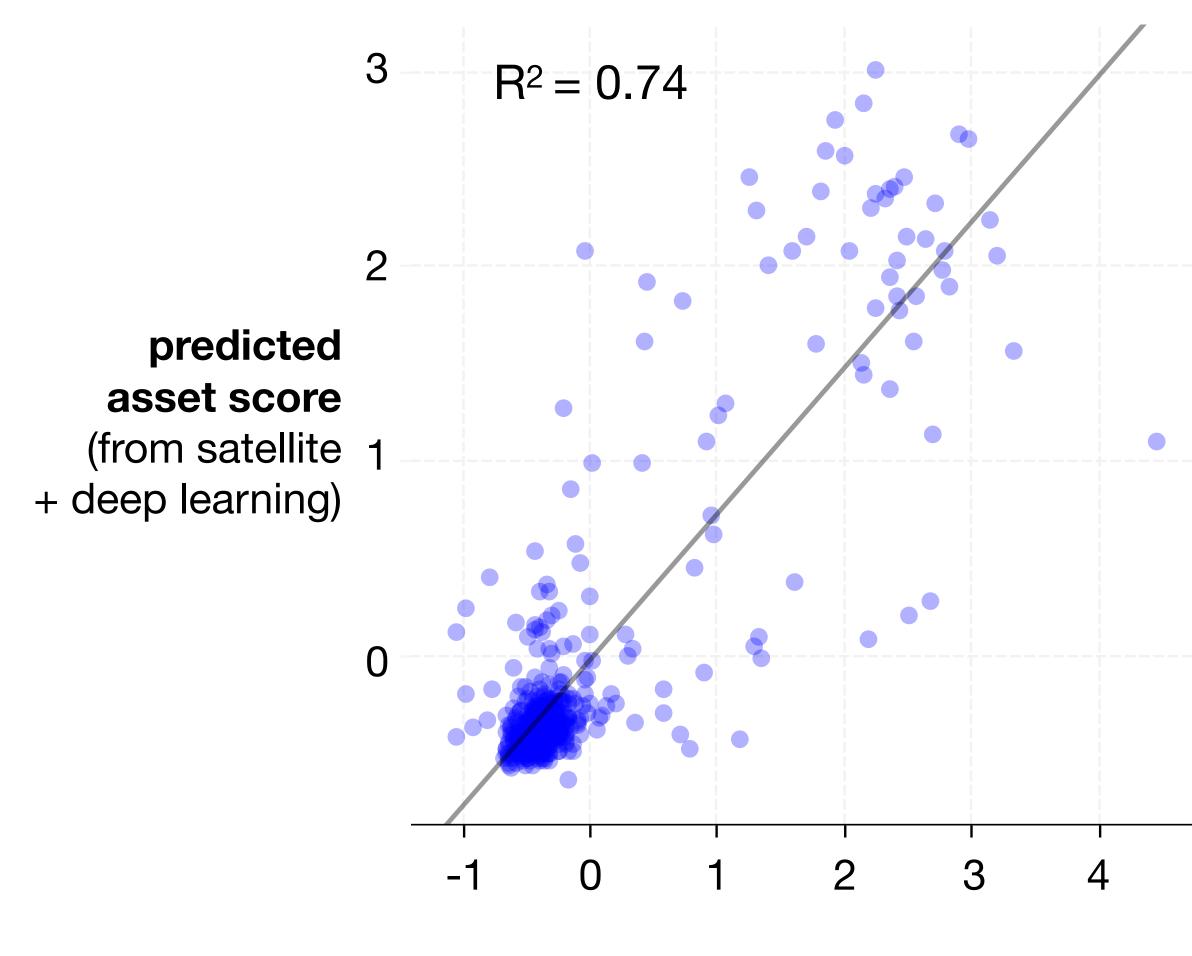
Estimating Wealth in Sub-Saharan Africa



predicted asset score (from satellite + deep learning)

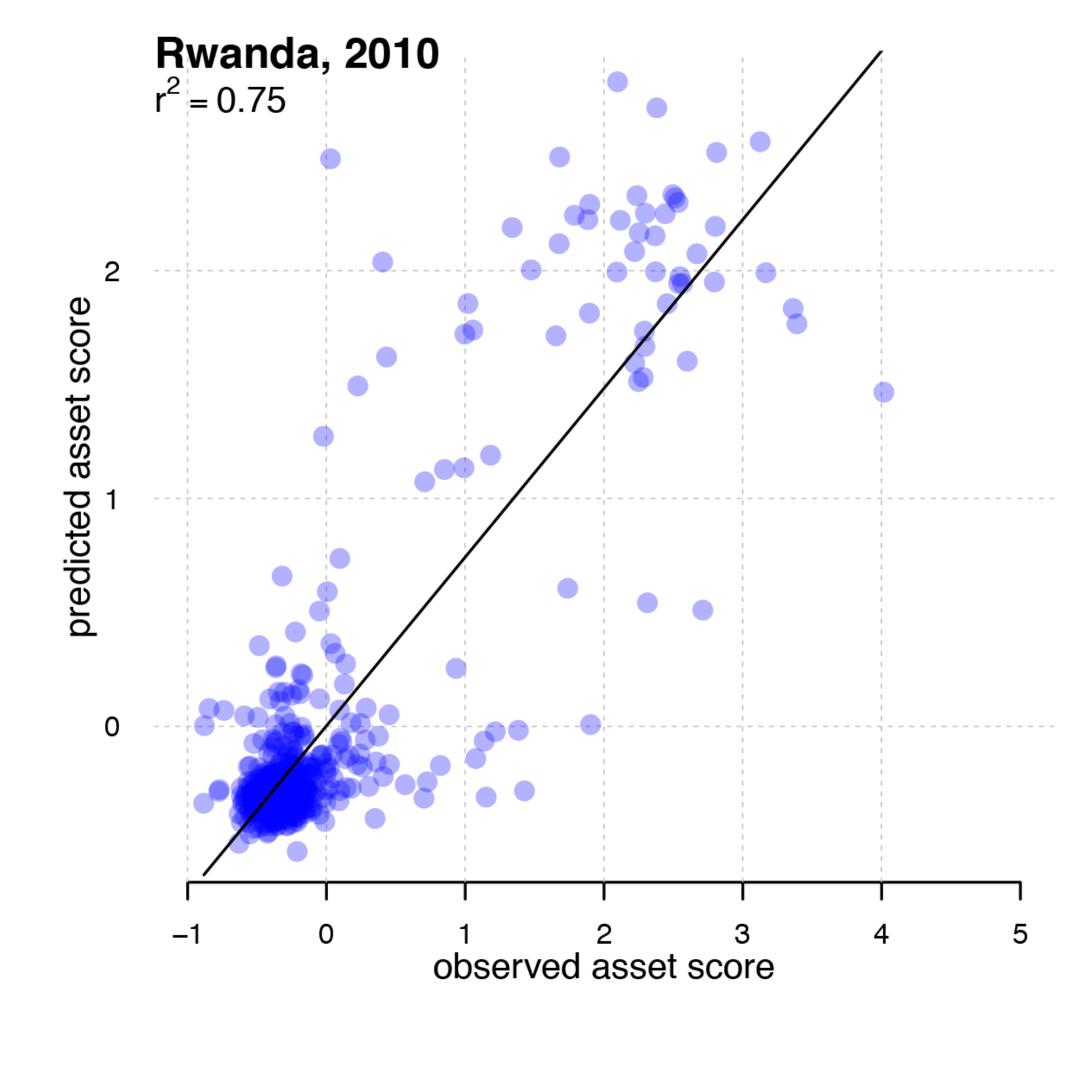
observed (surveyed) asset score

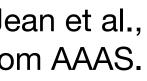
Estimating Wealth in Sub-Saharan Africa



observed (surveyed) asset score

Reference figures reproduced from Jean et al., "Combining satellite imagery and machine learning to predict poverty", Science. Reprinted with permission from AAAS.





Estimating Wealth Outside Sub-Saharan Africa

Sub-Saharan Africa

(Jean et al. 2015)

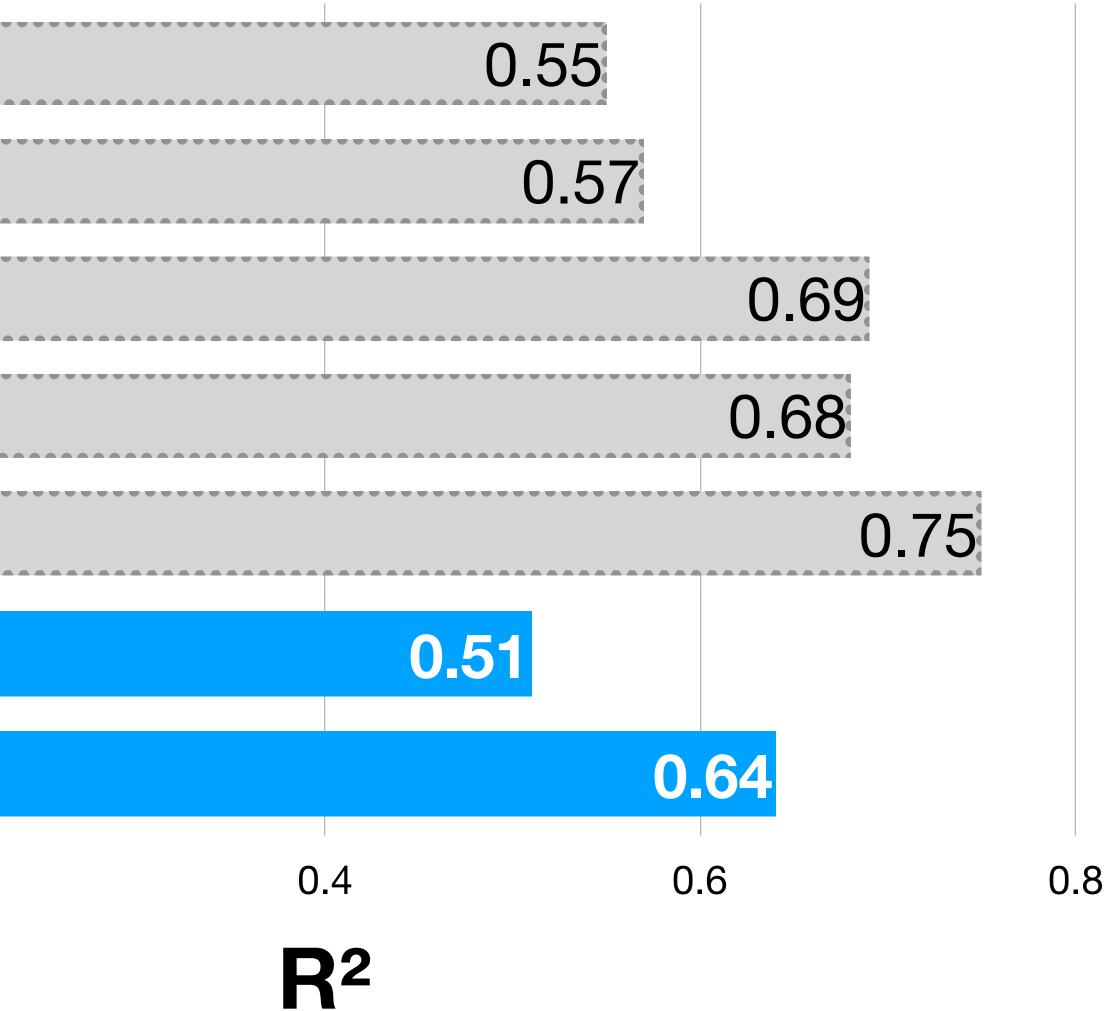
Malawi			0.55		
Tanzania			0.57		
Uganda				0.69	
Nigeria				0.68	
Rwanda				0.75	
	0.	2 0.	.4	0.6	0.8
		R	2		

Estimating Wealth Outside Sub-Saharan Africa

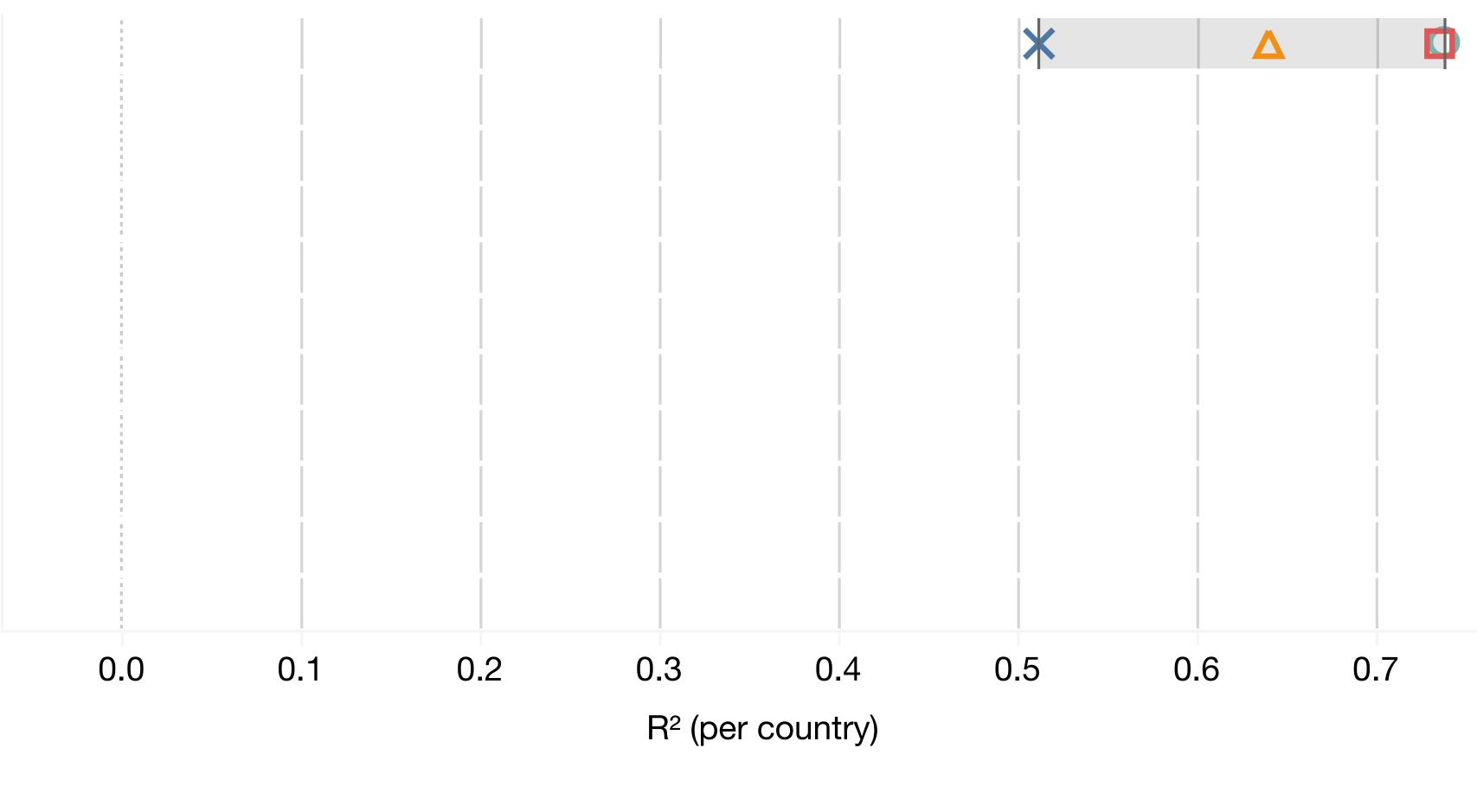
Sub-Saharan Africa

(Jean et al. 2015)

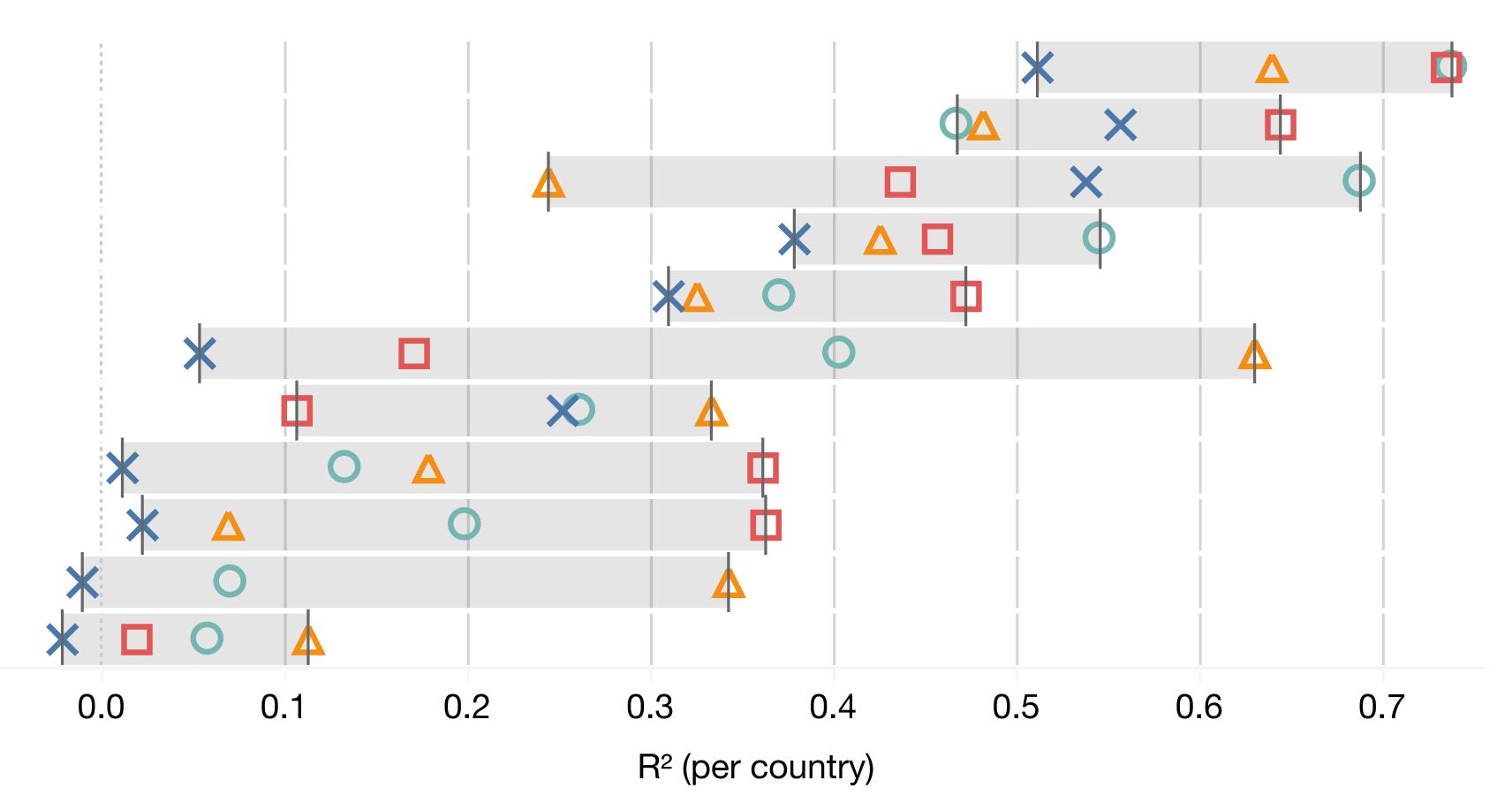
Malawi		
Tanzania		
Uganda		
Nigeria		
Rwanda		
Haiti		
Nepal		
() 0.	2



Estimating Development Indicators Everywhere



Estimating Development Indicators Everywhere

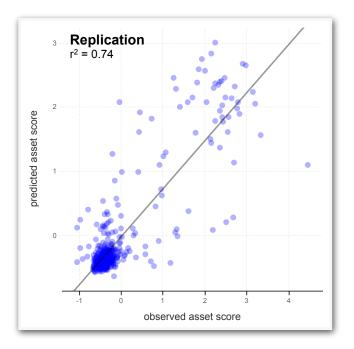


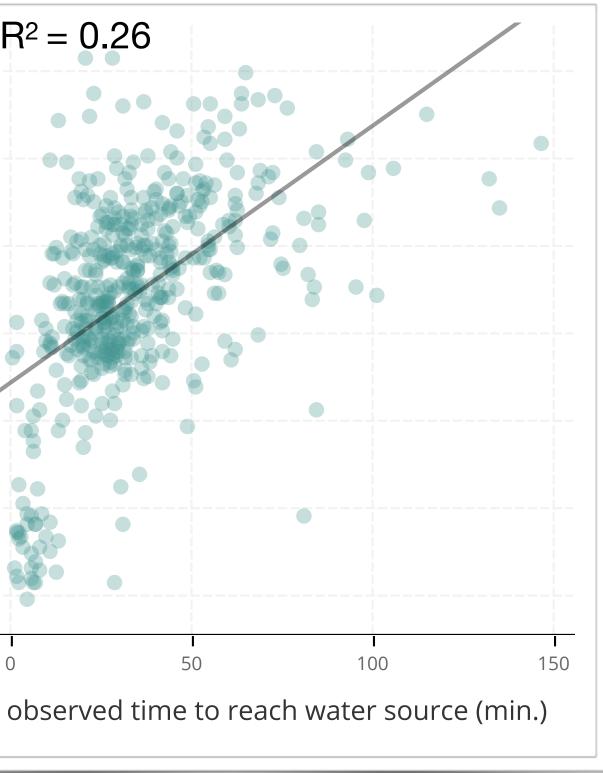
wealth education electricity mobile phone ownership female BMI bed net count water access child weight %ile child height %ile hemoglobin level child weight / height %ile

Mileage Varies When Estimating Other **Development Indicators**

Household Level of Education Access to Drinking Water $R^2 = 0.47$ $R^2 = 0.26$ source (min.) 60 1.2 50 education index reach water 1.0 30 predicted to time predicted 10 0.6 50 1.0 0.5 1.5 observed education index

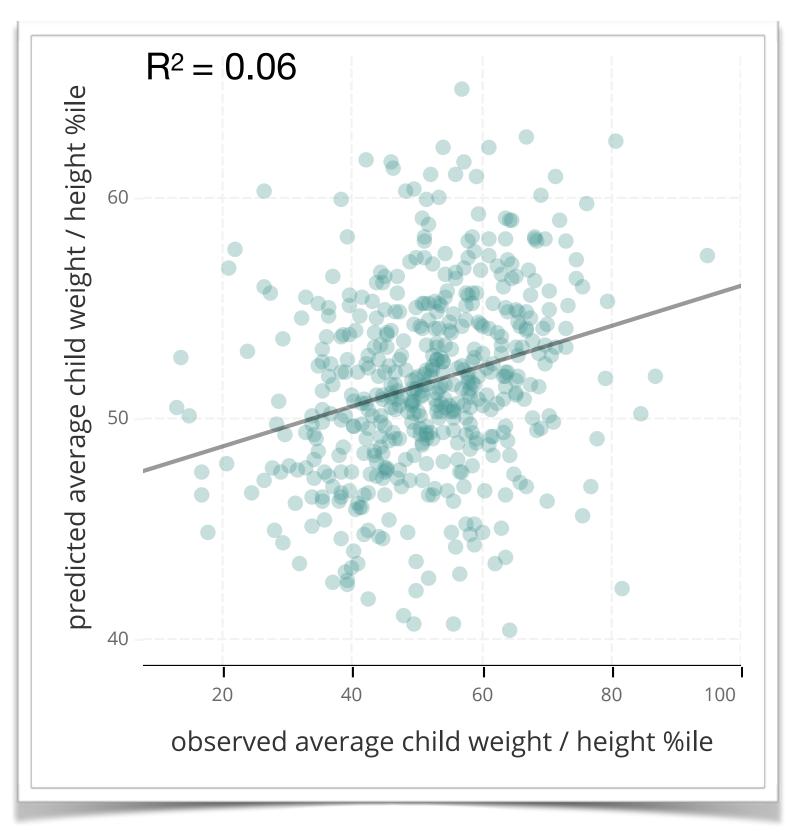
Reference: Estimating Wealth





Child Weight / Height Percentile

 $R^2 = 0.74$



Taking Stock of Estimating **Development with Satellite Imagery**

This approach works well for estimating wealth in sub-Saharan African ($R^2 \approx 0.55-0.75$)

sub-Saharan Africa ($R^2 \approx 0.5-0.65$).

measures of human development ($R^2 \approx -0.02 - 0.65$).

- And the approach works pretty well for two countries outside
- However, the approach does not trivially generalize to other

Are There Fundamental Obstacles to Estimating Indicators using Satellite Images?

- Insufficient visual signal? Satellite images may lack cues for predicting more "invisible" measures of development
- Noise by design: Ground truth data has built-in noise
- *Hard-to-learn features?* Other methods to define features may be more suitable (e.g., Gros and Tiecke, for population density)

Estimation Might Improve With Additional Effort

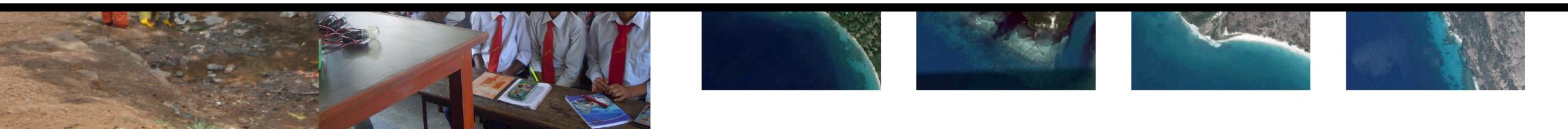
- Machine learning design: network architecture, hyperparameters, non-linear model, data augmentation, image resolution

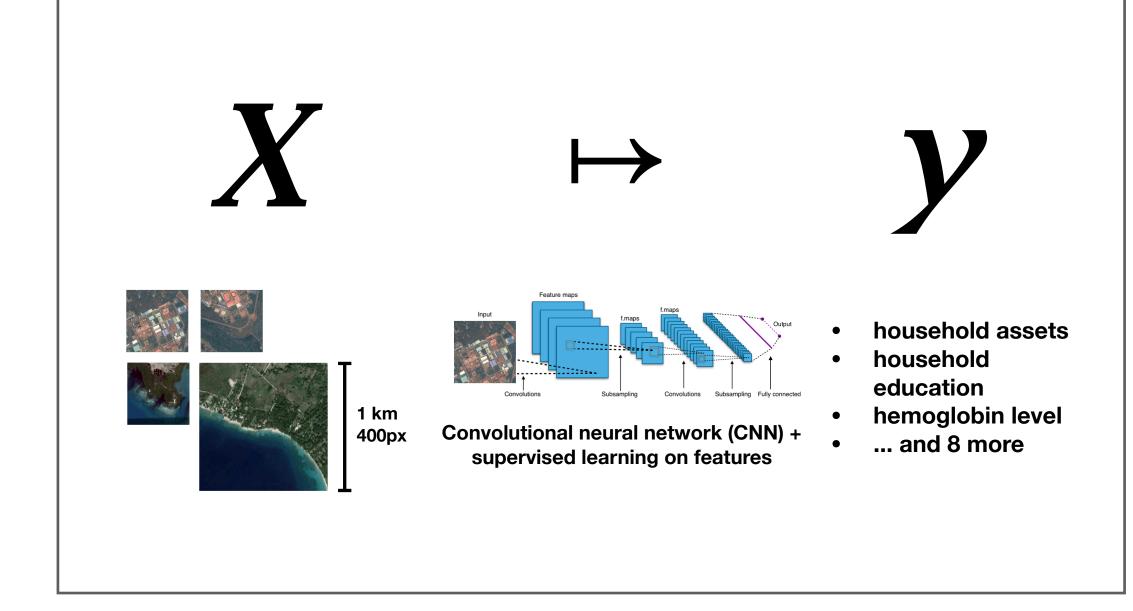
• Neural Network Tuning: Another categorical variable for tuning the network (besides night-time luminosity)

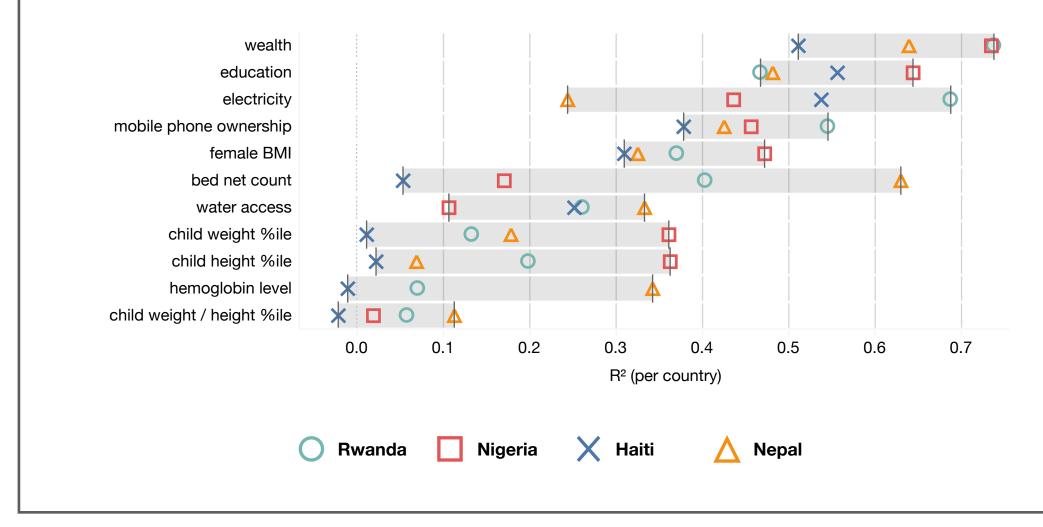
Key Takeaway

This exact framework—retraining a deep neural network on nightlights data, and then using those features to predict the wealth of small regions in sub-Saharan African—shows promise even outside sub-Saharan Africa.

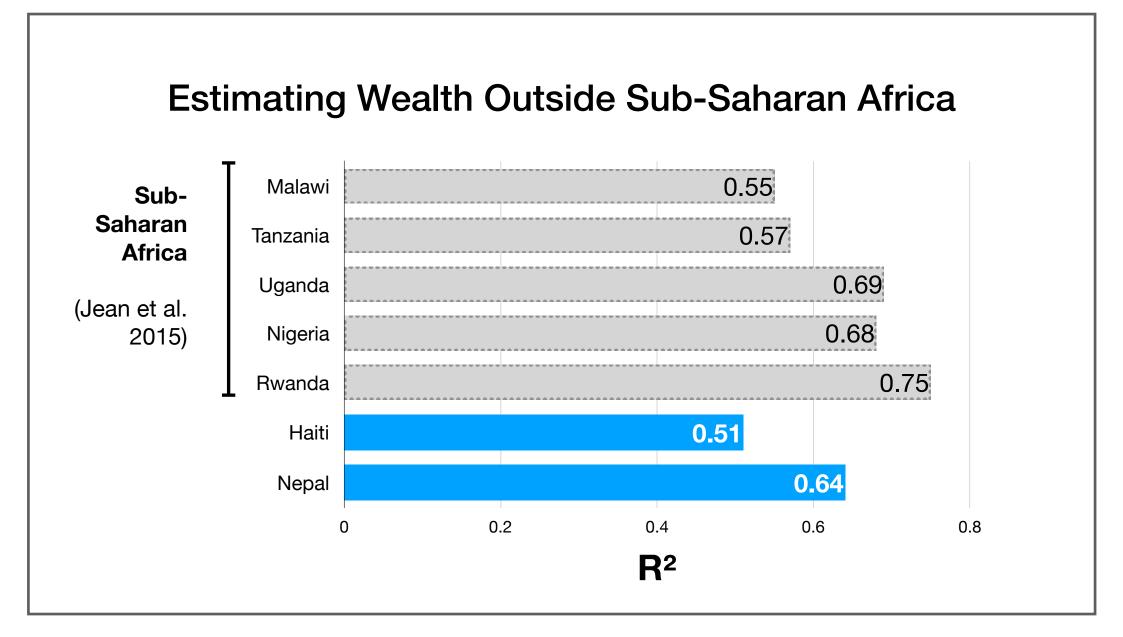
Though it cannot be applied directly to estimating arbitrary indicators in any country with uniformly good results.







Paper: http://tinyurl.com/ictd17-satellites



Key Takeaway

This exact framework—retraining a deep neural network on nightlights data, and then using those features to predict the wealth of small regions in sub-Saharan African—shows promise even outside sub-Saharan Africa.

Though it cannot be applied directly to estimating arbitrary indicators in any country with uniformly good results.

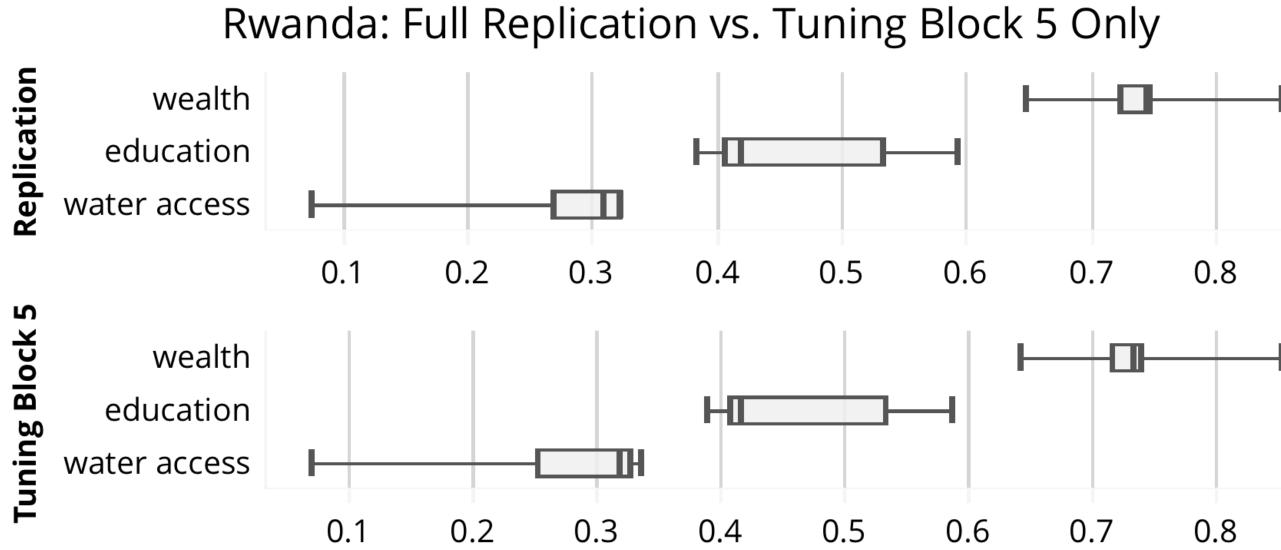
Email: andrewhead@berkeley.edu

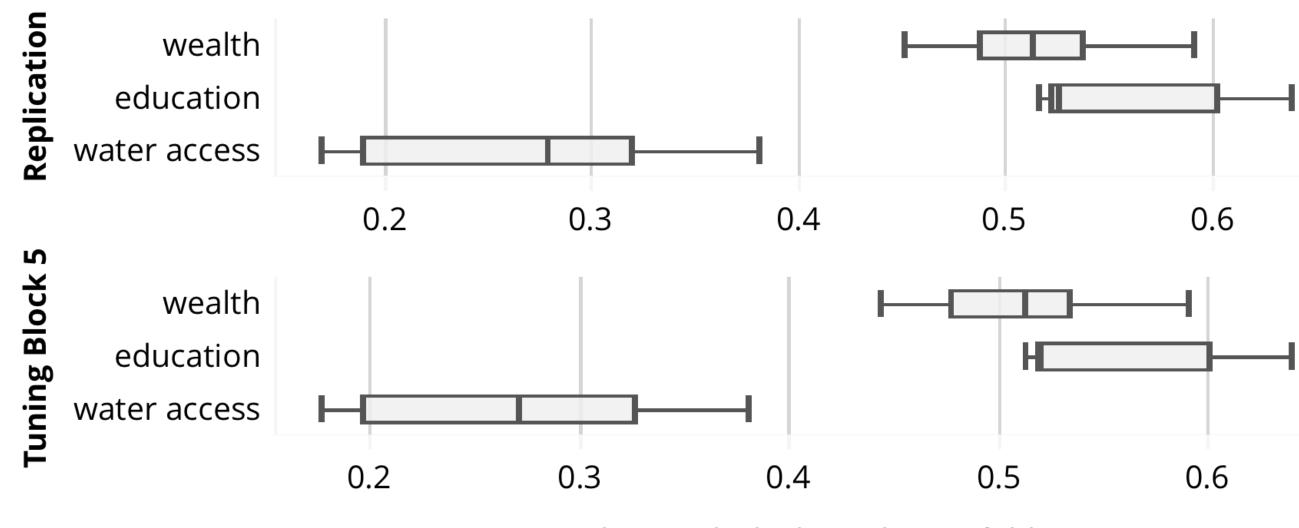
Rwanda

Nigeria

Haiti

Nepal

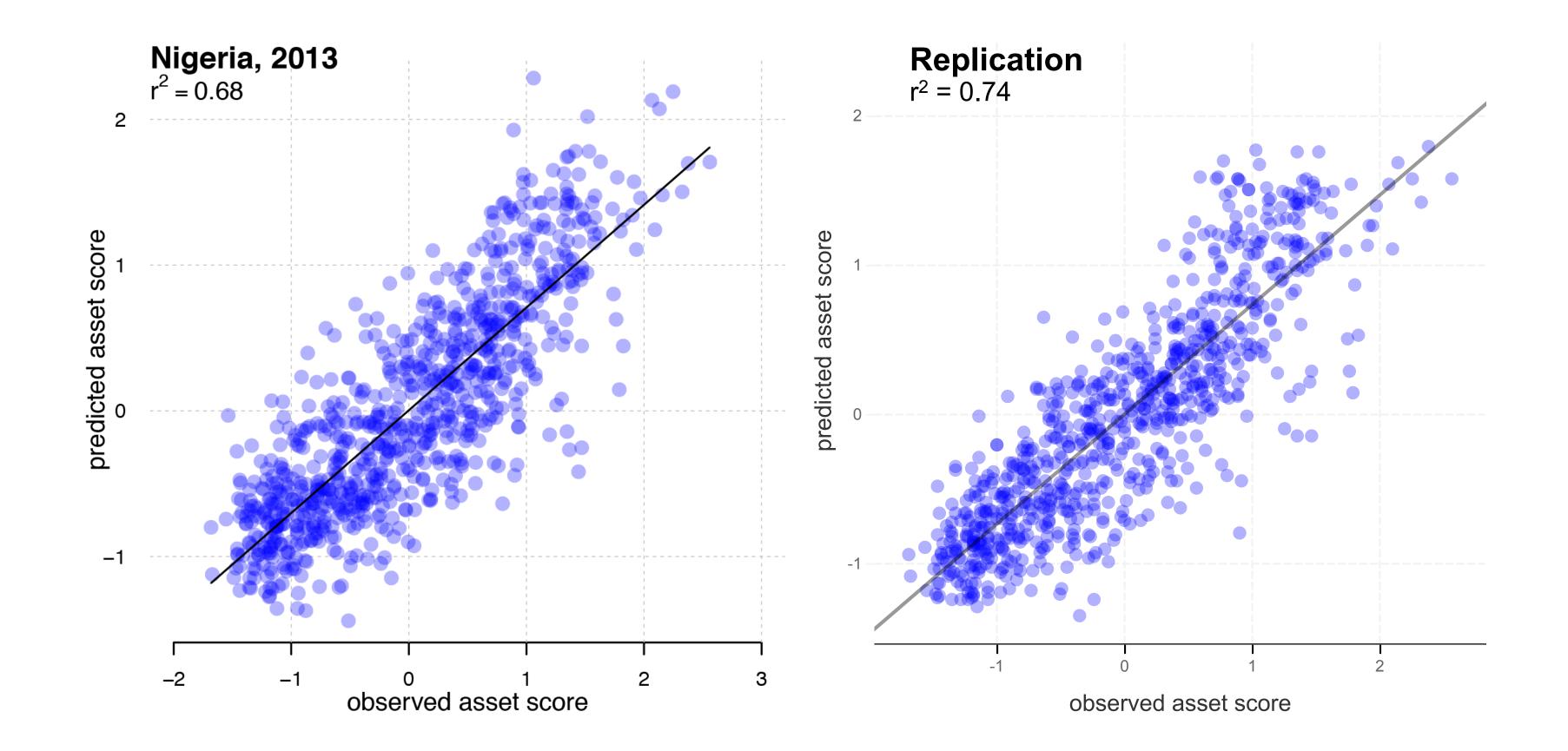




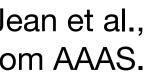
Haiti: Full Replication vs. Tuning Block 5 Only

R² (box and whiskers show 5 folds)

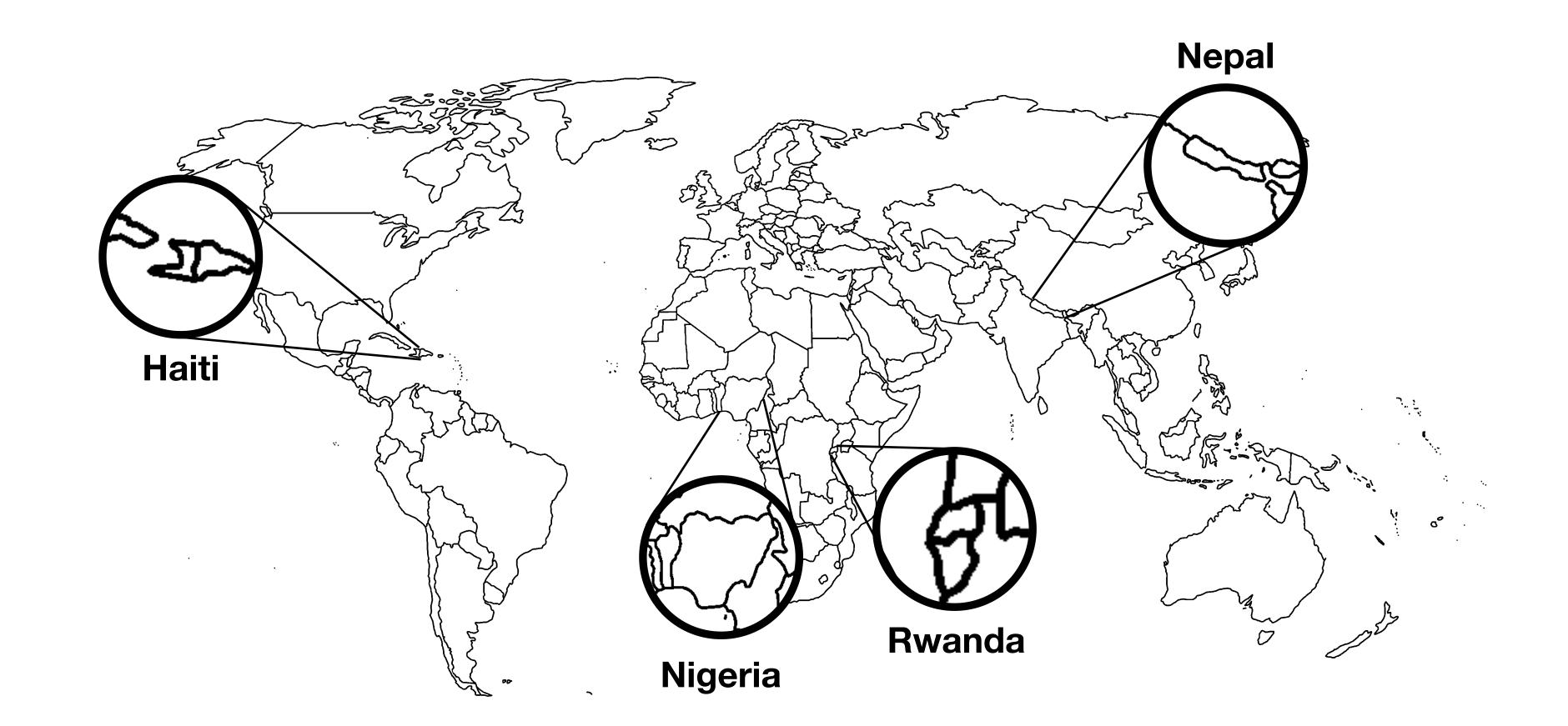
Replicating Nigeria Wealth Estimation



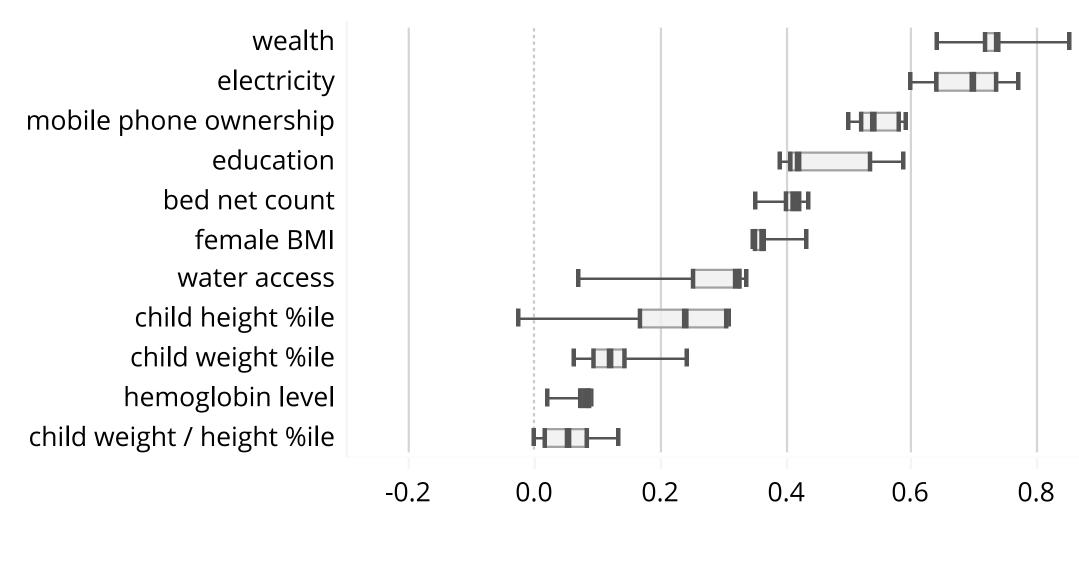
Reference figures reproduced from Jean et al., "Combining satellite imagery and machine learning to predict poverty", Science. Reprinted with permission from AAAS.



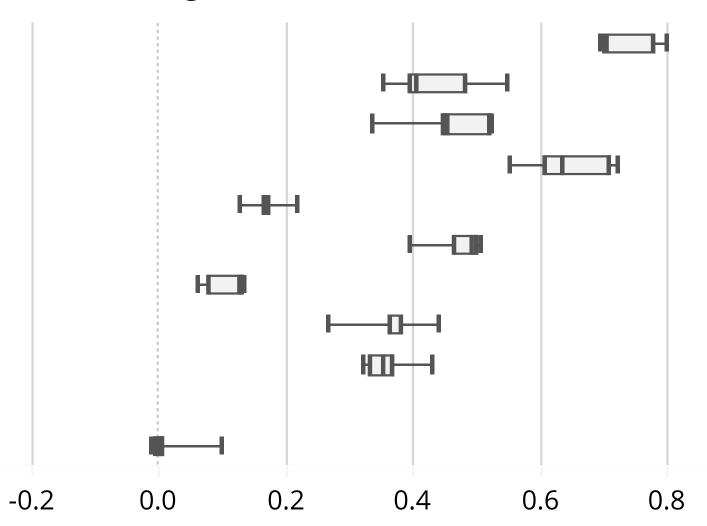
... And Beyond Sub-Saharan Africa



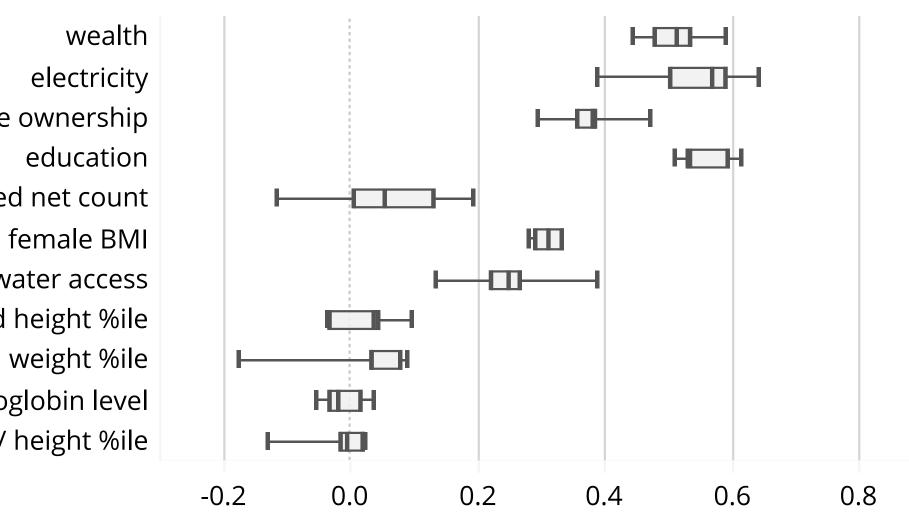
Rwanda



Nigeria

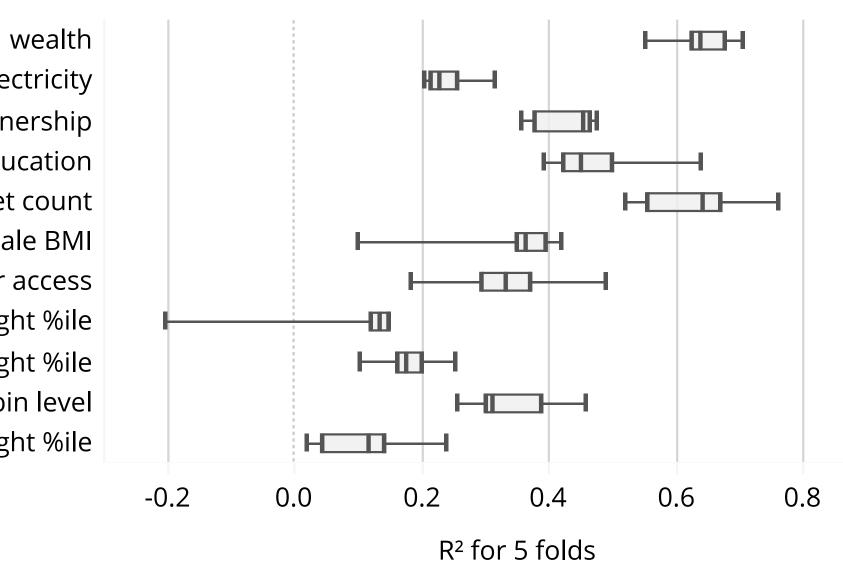


wealth electricity mobile phone ownership education bed net count female BMI water access child height %ile child weight %ile hemoglobin level Haiti



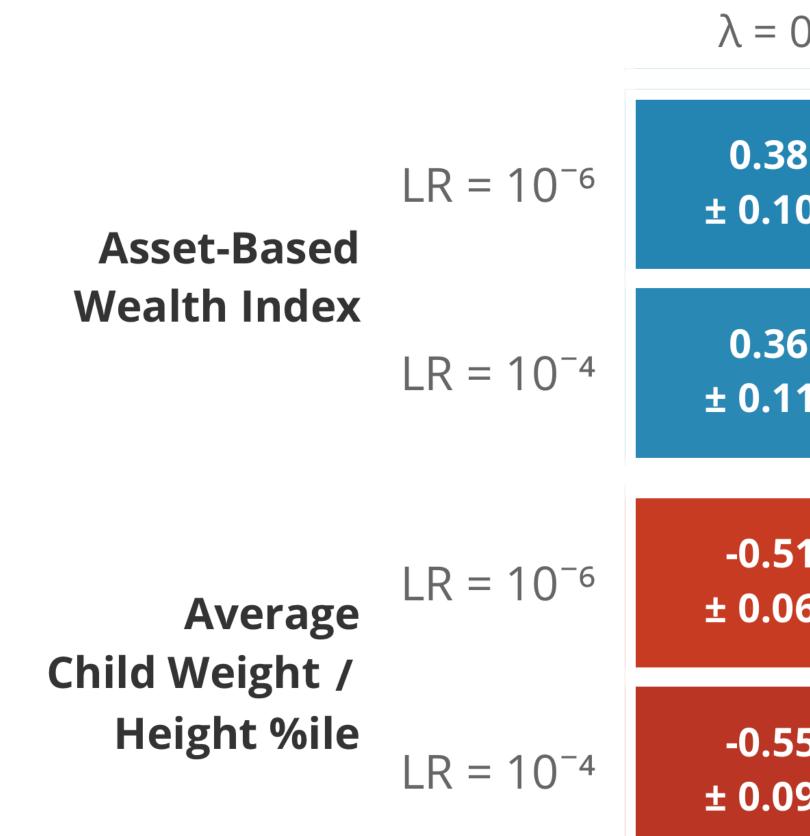
wealth electricity mobile phone ownership education bed net count female BMI water access child height %ile child weight %ile hemoglobin level

Nepal



wealth electricity mobile phone ownership education bed net count female BMI water access child height %ile child weight %ile hemoglobin level child weight / height %ile

A Brief Fine-Tuning Experiment



 $\alpha = 1$ tuned α $\lambda = 0$ $\lambda = 5 \times 10^{-4}$ $\lambda = 0$ $\lambda = 5 \times 10^{-4}$

8	0.38	0.51	0.51
0	± 0.10	± 0.06	± 0.06
6	0.35	0.51	0.51
1	± 0.13	± 0.06	± 0.05
51	-0.51	-0.02	-0.02
06	± 0.06	± 0.06	± 0.06
55	-0.55	-0.02	-0.02
)9	± 0.11	± 0.06	± 0.06