Can Human Development Be
Measured with Satellite Imagery?
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Quality, accessible, timely and reliable
disaggregated data will be needed to help with
the measurement of progress and to ensure that
No one Is left behind.

Transforming our world: the 2030 Agenda for Sustainable Development
United Nations
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Though nationally-representative surveys like the
Demographic and Health Surveys requires visits to more
than a year and tens of millions of dollars to complete.



Measuring Development Outcomes from

Existing Data Sources

s P ' .
e | V. e
RSS! 5 b
"- - 39 d%:{{.i“ %\%?’*‘51’"‘_ .

sale W gl '
Fe s v 5 5 o
. WG rhis v B e A I | 'y N .
/ - , - «"3’(’!’?’{‘? Ay "'99‘-‘ “@‘IJL"?-V K \g nE, A&
: o, S el I S e T SERTRY &
e i "‘. PN A % 19 Q“- Y > LT N "’.‘.
; RN Mu&;ﬁ,}ﬁ,,ﬁ._,.ﬁ.’ S A BT, .

> | " 8 A Y. FL . _ ” . . \ £
f & ¥ A " . s i o T - g Wt
o P < ¥ . % .
raN v : R .;; : o i g e N
- &y 2 7/‘*” ’ 3 ar v "".:“2 4 ‘L-O’/l%- ? y ..":\, B ‘k.),&, 3 " .' ’ "&u
; s T T A SR b LT B «c":":}f?-;"""'?r - : -
- ~e f " &7 5 o o " .\’ \ " 3 B W R B #&,’ T %*- ¥ b’é'.' . .’ . Sy T }I_. )

A 3 ~ % '3

- 3 'ﬂ' 8 - el Ny A S, g l‘/ &~y oA 4 N

> e L %’}‘ ’:'. *v"\ ‘:.\"' r Ly "'}'% "-l‘f' Ha. -n",{’ "'r&g' 3 ) s ) A o/ F
Jyr—— & | A% - ARTR o 3 § 4,5' o s T ’5‘ . L6 -~ s v } :

4 - . ® . Q:ﬁ AR \ . JQ."‘.?;' '-" Yo : ﬁ*%“’ K € i

. - ” . . ’ oS LA \ '"i{ *#“ % MI 2 ~ RS 2
- - 4 - & ' - - \6'. a'\ V8 . N .IQ '.-"-'.'\:‘ "\"2‘7 -# n)'bd' V. D > ;

- » . » : - o "ﬂ‘"& Q . \ o -.‘9 ..‘1.77,_ g o » o i

ot " . v . | '\.*;""" 4\’20\ v e W T Ao X SO -
" NG W A i

Nighttime Luminosity
Chen and Nordhaus 2011

2 — ; W YT e = R p G .
P e . ; b N O 1
: | - L5 ‘o - 5 » - ;:*5\‘\*‘»'> «V;,‘,v'c A

L



What Can You Estimate Using Daytime Satellite Images?

R —— —

Household assets Mobile phone Access to
ownership electricity

Level of education Mosquito nets Access to
drinking water
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Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Deep neural network +
supervised learning on features

household assets
household
education
hemoglobin level
... and 8 more



Estimating "Human Development™

We estimate Demographic and Health Surveys (DHS) Survey Data:
® | arge-scale (thousands of surveyed households per country)
® Surveys are nationally representative

492 "clusters” of surveyed Indicators of development include:
households in Rwanda : :
- e (Continuous-scale asset index
e |evel of education attained
e Time to reach a source of drinking water
e Average hemoglobin level

e Average weight-for-height percentile




Daytime Satellite Imagery

We fetched 10,000s of daytime satellite images for 4 countries (2 outside
sub-Saharan Africa), using the Google Static Maps API.

Rwanda

i
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DHS
cluster
centroid

10x10 images Size: 1 km?2
Resolution: 400x400px




Estimating Development from Satellite Images
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Estimating Development from Satellite Images

Supervised Learning
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Estimating Development from Satellite Images

Supervised Learning
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a learned from cross-validation



Estimating Development from Satellite Images
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Estimating Development from Satellite Images
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Estimating Development from Satellite Images
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Estimating Development from Satellite Images

Given a
cluster
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Estimating Wealth in Sub-Saharan Africa

predicted
asset score

(from satellite 1
+ deep learning) ; \
' 1 "cluster" of

households in Rwanda

observed (surveyed) asset score



Estimating Wealth in Sub-Saharan Africa

R==0.74
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Estimating Wealth in Sub-Saharan Africa

Rwanda, 2010

r*=0.75
3 R2=0.74
2
2 4 ©
3 S
predicted %
asset score %
(from satellite 1 o1
+ deep learning) i [
| 5
Q.
0 ! 0
| | | ! ! ! | l | | | | I
-1 0 1 2 3 4 1 0 1 2 3 4 5

observed asset score
observed (surveyed) asset score

Reference figures reproduced from Jean et al.,
“Combining satellite imagery and machine learning to predict poverty”, Science. Reprinted with permission from AAAS.



Estimating Wealth Outside Sub-Saharan Africa

Sub-
Saharan
Africa

(Jean et al.
2015)

Malawi
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Nigeria

Rwanda
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Estimating Wealth Outside Sub-Saharan Africa

Sub-
Saharan
Africa

(Jean et al.
2015)

Malawi
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Estimating Development Indicators Everywhere

wealth )|(

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
R? (per country)

Rwanda D Nigeria X Haiti Nepal



Estimating Development Indicators Everywhere

wealth

education

electricity

mobile phone ownership
female BMI

bed net count

water access

child weight %ile

child height %ile
hemoglobin level

child weight / height %ile
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| | Nigeria
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Mileage Varies When Estimating Other
Development Indicators

Household Level of Education
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Taking Stock of Estimating
Development with Satellite Imagery

This approach works well for estimating wealth in sub-
Saharan African (R2 = 0.55-0.75)

And the approach works pretty well for two countries outside
sub-Saharan Africa (R? = 0.5-0.65).

However, the approach does not trivially generalize to other
measures of human development (R? = -0.02-0.65).



Are There Fundamental Obstacles to Estimating
Indicators using Satellite Images?

* [nsufficient visual signal? Satellite images may lack cues for
predicting more "invisible” measures of development

* Noise by design: Ground truth data has built-in noise

» Hard-to-learn features? Other methods to define features may
be more suitable (e.g., Gros and Tiecke, for population density)



Estimation Might Improve With Additional Effort

* Neural Network Tuning:. Another categorical variable
for tuning the network (besides night-time luminosity)

e Machine learning design: network architecture,
hyperparameters, non-linear model, data
augmentation, image resolution



Key Takeaway

This exact framework—retraining a deep neural network on night-
lights data, and then using those features to predict the wealth of

small regions in sub-Saharan African—shows promise even
outside sub-Saharan Africa.

Though it cannot be applied directly to estimating arbitrary
indicators in any country with uniformly good results.




Estimating Wealth Outside Sub-Saharan Africa
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Estimating Development Indicators Everywhere
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Paper: http://tinyurl.com/ictdl7-satellites Email: andrewhead@berkeley.edu






Rwanda: Full Replication vs. Tuning Block 5 Only
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Replicating Nigeria Wealth Estimation

Nigeria, 2013 . Replication
r°=0.68 r2=0.74
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Reference figures reproduced from Jean et al.,
“Combining satellite imagery and machine learning to predict poverty”, Science. Reprinted with permission from AAAS.



... And Beyond Sub-Saharan Africa
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A Brief Fine-Tuning Experiment

Asset-Based
Wealth Index

Average
Child Weight /
Height %ile
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