Social Health Cues Developers Use when
Choosing Open Source Packages

Andrew Head
UC Berkeley
Berkeley, CA, USA
andrewhead@berkeley.edu

ABSTRACT

Developers choose open source packages from many alter-
natives. One increasingly important factor when choosing a
package is its “social health”, or a developer’s ability to get
help on communication channels. We conduct a study to
understand how developers learn about the social health of
open source packages before using them. We offer prelimi-
nary results of the cues developers find.

CCS Concepts

eInformation systems — Social networks; Web log analy-
sis; Internet communications tools; eSoftware and its en-
gineering — Documentation; Open source model; Search-
based software engineering;

Keywords

Social health; community; packages; open source

1. INTRODUCTION

How should a developer choose a package from among
many choices? This question gets more difficult each day as
new open source packages are published. We want to build
visualizations and search tools to help developers make such
choices more quickly and effectively.

We start by asking what information matters to develop-
ers. Typically, developers choose open source packages based
on functionality and quality of documentation. We suggest
that as social communication channels become intertwined
with the development process [14], developers need to un-
derstand the “social health” of a package’s community before
they use it. We define a package as socially healthy when a
developer can reliably get helpful answers from a package’s
forums, mailing lists, and other communication channels.

We ran a study to find out how developers currently learn
about the social health of packages. We contribute prelim-
inary results from this study, including the following: (1)
Developers seek out common cues when answering the same

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
FSE’16, November 13-18, 2016, Seattle, WA, USA

ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983973

1133

questions about a package’s social health; (2) They rely on
texts of issue reports, documents, and conversations to as-
sess social health.

2. OUR APPROACH

We invited 10 developers to a study where they compared
the social health of two packages. Each participant chose
a pair of packages, out of three pairs. Then we asked each
participant to compare the two packages, using six questions
about each package’s community, documentation, and devel-
opers. The questions were based on related work and con-
versations we had with software developers, and included:

e Which community will be more welcoming when re-
sponding to questions you ask?

e Which package’s documentation will be more up-to-
date with the code?

e Which package’s developers can you better trust to
make reliable, usable software?

These three questions (out of six) were based on observa-
tions of anti-social behavior in developers’ communication
channels [14], concerns about how up-to-date documentation
is [7, 10, 12, 14], and how developers assess code example
quality based on author reputation [12].

Participants answered the questions using the web. We
note developers often get answers face-to-face [6, 14], over
email [5, 6], or by trying out code [4]. However, we focused
on information on the web, as we believed this would reveal
signals we could incorporate into future search tools.

We collected three measurements of cues participants used
to answer social questions: a timestamped log of visited
URLs; self-reported ratings of web pages’ “helpfulness” for
answering each question; and open-ended responses of what
evidence on the web was most helpful for comparing the so-
cial health of the two packages for each question. We report
a view of our current results here. Our on-going analysis has
focused on two research questions: (1) What sites do par-
ticipants use to learn about a package’s social health? (2)
What challenges do developers face when learning about a
package’s social health?

3. PRELIMINARY RESULTS

We observed several noteworthy strategies participants
took to learn about a package’s social health. First, par-
ticipants read relevant text to assess social health. In par-
ticular, participants skimmed text from conversations to de-
termine how welcoming communities were. Participants also

Which community will be more welcoming
when responding to questions you ask?

T 0 =

M

Which package will have better How-To documentation

[0 W10 l

for all the tasks you will want to do?

Which package's developers can you better trust
to make reliable, usable software?

O T T T T T |

Time (8 minutes)

[official Docs [Blog [l GitHub project home [GitHub commit history [l GitHub pull request overview [l GitHub issue overview [T] GitHub issue [[] Example code

[stack Overflow home [stack Overflow question [stack Overflow search [Google Groups overview O Google Groups topic (] Google search

Figure 1: We asked developers to answer questions about the social health of open source projects, specifically
their community, documentation, and developers. This plot shows the search behavior of a single participant

for three of the six questions.

This participant viewed many documents to judge the difference in social

health between two packages. To determine which package had a more welcoming community, they viewed
seven questions on Stack Overflow, four issues on GitHub, and three conversations on Google Groups.

read texts from documentation about a project’s API and
development philosophy to determine if a package was de-
signed for users with their backgrounds and goals. Existing
package comparison tools do not support reading relevant
conversations and documentation. Instead, such tools only
show summary statistics (e.g. [1, 3]).

Participants sometimes looked for social health cues in
the form of advice from current users of a package. Partic-
ipants queried the web through search engines to find pre-
built summaries describing the community and documenta-
tion. Participants found explicit comparisons of packages
on Reddit, and user testimonials on Quora. One participant
consulted issue reports to determine how up-to-date docu-
mentation was. When participants looked at texts of ques-
tions, documents, and issue reports, they chose a handful of
pages from dozens or even hundreds.

Our URL log data suggests common places where partic-
ipants found social health cues. Participants relied on dif-
ferent types of web pages when answering each social health
question. We have seen participants find: (1) whether a
community is welcoming by viewing Q&A sites and discus-
sions on Reddit and Google Groups; (2) documentation re-
cency by viewing issue reports, code contribution histories,
and pull request contents; (3) the trustworthiness of devel-
opers by viewing issue reports, and profiles on code hosting
sites. Figure 1 shows a cross-section of the URLs one par-
ticipant visited when answering three of the six questions.
We leave quantitative analysis of these trends and a full ex-
ploration of specific cues from these sites for future work.

Our preliminary results confirm a need for search tools
that reveal obscure information about social health quickly.
Participants frequently realized they missed important in-
formation after twenty or thirty minutes of learning about a
package. One participant wrongly assessed a package had no
community at all. Another participant failed to find a newer
version of a package under a different name. And another
participant missed large repositories of example code writ-
ten by the package’s developers. Such incorrect judgments
could be costly to reverse: One participant read source code
before realizing that one package’s programming API was
preferable to one he favored before.

We believe these incorrect judgments are a product of de-
velopers’ habits and the limitations of current information
interfaces. With attention to both, we can design more pow-

1134

erful search tools to help developers quickly and effectively
learn about packages’ social health when choosing between
them. For now, these preliminary results suggest that pack-
age consumers should not trust their initial instincts, and
should inspect comparisons, discussions, and Q&A for a
well-informed picture of a package’s social health. Develop-
ers should know that cues about the social health for their
projects could exist on dozens of domains, and potential
consumers may need help learning where to look for help.

4. RELATED WORK

Developers work in an immense online network. Devel-
opers benefit from this network by leveraging social media
and other channels to stay informed and connect with other
developers [13, 15]. Today there is a proliferation of socially-
enabled channels [14] through which developers answer each
other’s questions [9], stay up-to-speed with rapidly changing
software [8], help each other overcome bugs and learn new
tools [11], and share information in many different forms at
many different speeds. The knowledge and conversations of
programmers are increasingly distributed across the web.

Some community-developed tools aim to help developers
compare packages. Such community tools only show a frac-
tion of the metrics used by developers. Typical metrics for
these tools (e.g., [1, 2, 3]) tend to be based on counts and
rates of code contributions, issue resolutions, downloads,
and “stars” on code hosting sites like GitHub. Developers
may be concerned with how much they respect the authors
of code [12], how up-to-date the documentation is [7, 10,
12, 14], and whether the community is anti-social [14]. We
propose that carefully selected samples from communication
channels can help developers make more informed judgments
based on social health. The current work presents a study
to help us pick these samples.

5. CONCLUSION

In this extended abstract, we propose that new tools can
help developers make sense of a sprawl of social information
for packages they choose. By presenting preliminary results
from a study with developers, we show evidence of what so-
cial signals exist on the web and where. Our results will
inform the design of search tools to help developers under-
stand packages and their social health.

6.

[1]
2]

REFERENCES

Awesome Python. https://python.libhunt.com/.
package-quality.
https://github.com/alexfernandez/package-quality.
Ruby Toolbox. https://www.ruby-toolbox.com/.

J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva,
and S. R. Klemmer. Two studies of opportunistic
programming: Interleaving web foraging, learning, and
writing code. CHI ’09.

A. J. Ko, R. DeLine, and G. Venolia. Information
Needs in Collocated Software Development Teams.
ICSE ’07.

T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: A study of developer work habits.
ICSE ’06.

T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: the state of the
practice. IEEE Software, 20(6), 2003.

M. Linares-Véasquez, G. Bavota, M. Di Penta,

R. Oliveto, and D. Poshyvanyk. How do API changes
trigger stack overflow discussions? a study on the
Android SDK. ICPC ’14.

1135

[9]

(10]

(11]

(12]

(13]

(14]

(15]

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak,
and B. Hartmann. Design lessons from the fastest q&a
site in the west. CHI ’11.

J. Nykaza, R. Messinger, F. Boehme, C. L. Norman,
M. Mace, and M. Gordon. What programmers really
want: results of a needs assessment for sdk
documentation. SIGDOC ’02.

C. Parnin, C. Treude, and M. A. Storey. Blogging
developer knowledge: Motivations, challenges, and
future directions. ICPC ’13.

M. P. Robillard and R. Deline. A field study of API
learning obstacles. Empirical Software Engineering,
16(6), 2011.

L. Singer, F. Figueira Filho, and M.-A. Storey.
Software engineering at the speed of light: how
developers stay current using twitter. ICSE ’14.

M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho,
and A. Zagalsky. The (R) Evolution of social media in
software engineering. FOSE ’14.

M. A. Storey, A. Zagalsky, F. Filho, L. Singer, and

D. German. How Social and Communication Channels
Shape and Challenge a Participatory Culture in
Software Development. IEEE Transactions on
Software Engineering, PP(99), 2016.

