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Abstract—Recent advances in program synthesis offer means
to automatically debug student submissions and generate per-
sonalized feedback in massive programming classrooms. When
automatically generating feedback for programming assignments,
a key challenge is designing pedagogically useful hints that are as
effective as the manual feedback given by teachers. Through an
analysis of teachers’ hint-giving practices in 132 online Q&A
posts, we establish three design guidelines that an effective
feedback design should follow. Based on these guidelines, we
develop a feedback system that leverages both program synthesis
and visualization techniques. Our system compares the dynamic
code execution of both incorrect and fixed code and highlights
how the error leads to a difference in behavior and where the
incorrect code trace diverges from the expected solution. Results
from our study suggest that our system enables students to detect
and fix bugs that are not caught by students using another
existing visual debugging tool.

I. INTRODUCTION

Personalized, timely feedback from teachers can help stu-
dents get unstuck and correct their misconceptions [1], [2].
However, personalized attention does not easily scale to mas-
sive programming classes [3], [4]. In lieu of feedback, it is
common for teachers in large classes to only provide test case
suites, against which students can test their submissions.

This substitution has some drawbacks. While a teacher
might look at the student’s submission and recommend re-
viewing a particularly relevant lesson or attempt to reteach an
important concept, test case feedback can only point out how
the student submission does not return the right answer. It can
be difficult for a student to map failed test results back to a
specific error in their code.

Recent advances in program synthesis promise to provide
more specific personalized feedback at scale for programming
assignments [5], [6], [7], [8], [9]. These systems use program
synthesis to learn code transformations that fix incorrect
student submissions. These transformations can then be turned
into a hint sequence that begins with pointing hints (e.g., where
the bug is) and ends with bottom-out hints (e.g., how to fix
the bug) [7], [9]. For example, consider the following edit to
fix an incorrect program:

def a c c u m u l a t e ( combiner , base , n , t e rm ) :
− i f n == 1 :
+ i f n == 0 :

re turn base
e l s e : . . .

Fig. 1. Our system finds the closest correct program to an incorrect student
program, executes both correct and incorrect programs, and shows where the
traces of the two programs begin to diverge.

This edit can be mapped to a series of hints such as point-
ing out the location of the bug (e.g., “Line 2 needs to be
changed.”) and suggesting the exact changes that the student
needs to make (e.g., “In the expression if n == 1 in line
2, replace the value 1 with 0.”).

However, appropriate strategies for turning fixes into more
pedagogically useful programming feedback remain an open
research problem. Well-designed feedback not only instructs
how to fix the bug, but also facilitates conceptual understand-
ing of the underlying cause of the problem [10], [11]. In
our observations, 80% of the time, teachers employ at least
one the following hint-giving strategies: reminding students
of relevant resources, explaining incorrect state or behavior,
and diagnosing the cause of the problem. Automatic pointing
and bottom-out hints do not reflect these hint-giving strategies.
Although some of these hint-giving strategies may be difficult
to automate, we hypothesize that automatic synthesized feed-
back can be improved such that it provides high-level hints
that explain why the student-written code is wrong and how
the synthesized code fix affects code behavior [12].

In this paper, we present TraceDiff, an automatic feedback
system that leverages both program synthesis and program vi-
sualization techniques to provide interactive personalized hints
for introductory programming assignments (see Figure 1).
Given the student’s incorrect code and a synthesized code
fix, our system first performs dynamic program analysis to
capture the execution of both the incorrect and fixed code,
comparing internal states and runtime behaviors. Then, the
system highlights how and where the trace of the incorrect
code diverges from the trace of the fixed code. To enable
users to interactively explore the behavior of the code, we
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incorporate Python Tutor [13], an existing visual debugging
tool frequently used in introductory classes, into our interface.
Our system is based on the following strategies:

1) Highlight behavior that diverges from the nearest
solution: It compares the executions of incorrect and
fixed code and highlights the point when their control
flows diverge.

2) Focus attention by extracting important steps: It
filters the execution traces which are only relevant to
the student’s mistake to focus attention.

3) Explore behavior through interactive program visu-
alization: It integrates Python Tutor to allow interactive
exploration of collected code traces.

4) Map erroneous concrete values to their cause by
abstracting expressions: It enables the student to in-
teractively map a concrete value (e.g., sum = 3 and
return 11) back to the expressions that computed
these values, such as variables and function calls (e.g.,
sum = add(1, 2) and return total ) to help
locate the cause of a test case failure.

Our system design is informed by a formative study where
we analyzed 132 Q&A posts from a discussion forum from
an introductory programming class. We also interviewed a
teaching assistant from this class. Based on the strategies the
TAs employ to answer student questions, we first identified
three high-level design guidelines that effective feedback sys-
tems should follow: (1) encourage students to explore code
execution with a visual debugger, (2) describe how actual
behavior differs from expected behavior, (3) refer to concrete
code locations and behavior to provide a starting point for
exploration. We then investigated how these strategies could be
automated in a feedback interface. Based on these guidelines,
we designed the features of a system and integrated these
features with an interactive debugging interface.

To evaluate if our system enables a more efficient debug-
ging experience than current interactive debugging tools, we
conducted a controlled experiment with 17 students where
participants were asked to debug incorrect student code from
introductory Python programming assignments and compare
TraceDiff with the Python Tutor interface. During a 60-minute
session, each participant was asked to perform two bug-fixing
tasks for each incorrect code: (1) locate the bug and (2) fix the
bug. We evaluated whether or not each participant correctly
answered these questions and measured the time spent to
complete these tasks. The result shows that, for one of the
incorrect code, only participants using TraceDiff were able to
fix it (5 out of 9), while none of the 8 participants using Python
Tutor could fix it. Although we have not found statistically
significant differences in the quantitative measures of the two
groups, 64.7% of the participants believed that TraceDiff was
the more valuable to identify and fix the bugs and 29.4%
thought that both tools were equally important (only 5.9%
preferred Python Tutor). In response to 7-point Likert scale
questions, participants significantly preferred TraceDiff over
Python Tutor in four out of five dimensions: overall usefulness,

usefulness to identify, understand, and fix the bugs.
In summary, in this work, we contribute:
• a characterization of key design guidelines for effective

programming feedback that can be generated by state-
of-the-art synthesis techniques, informed by a formative
study.

• the implementation of hints in an interactive debugging
interface, appropriate for deployment and evaluation in a
massive programming classroom.

• quantitative and qualitative results of a controlled experi-
ment with 17 students where we compare TraceDiff with
Python Tutor interface.

II. RELATED WORK

A. Automated Feedback for Programming Assignments

Intelligent tutoring systems (ITSs) often supply a sequence
of hints that descend from high-level pointers down to specific,
bottom-out hints that spell out exactly how to generate the
correct solution. For example, in the Andes Physics Tutoring
System, hints were delivered in a sequence: pointing, teaching,
and bottom-out [14]. ITSs have been historically expensive and
time-consuming to build because they rely heavily on experts
to construct hints.

Recently, researchers have demonstrated how program syn-
thesis can generate some of the personalized and automatic
feedback typically found in ITSs (e.g., [6], [7], [8], [9]). For
example, AutoGrader [9] can identify and fix a bug in an
incorrect code submission, and then automatically generate
sequences of increasingly specific hints about where the bug
is and what a student needs to change to fix it.

High-level hints that point to relevant class materials or
attempt to reteach a concept can be difficult to automatically
generate because they require more context or the deep do-
main knowledge of a teacher. To leverage the teacher’s high-
level feedback at scale, CodeOpticon [2] provides a tutoring
interface that helps teachers provide synchronous feedback for
multiple students at once. Recent work has also demonstrated
how program analysis and synthesis can be used as an aid
for a teacher to scale feedback grounded in their deep domain
knowledge [4], [5]. While scaling the return on teacher effort,
these systems still require teachers to manually review and
write hints for incorrect student work.

In contrast to prior work on scaling up teacher-written
feedback, this paper focuses on fully automated approaches
to provide high-level hints, specifically for the context of
writing code. D’Antoni et al. have explored the similar design
challenge of automatically generated hints for the domain of
finite automata [3]. Taking inspiration from this work, we
aim to generate high-level hints in the domain of introductory
programming assignments.

B. Design of Interactive Debugging Tools

One of the major challenges in learning to program is to
relate code to the dynamics of program execution [15]. In an
introductory programming course, many novice students have
difficulties and misconceptions due to a lack of understanding
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of dynamic program execution [16]. One practical way to
alleviate this cognitive difficulty is to visualize execution. Re-
cently, researchers have proposed many program visualization
tools (see [17] for a comprehensive review). These tools
typically execute the program, store a snapshot of internal
states at each execution step, and show a visual representation
of runtime states such as stack frames, heap objects, and data
structures [13]. Recent studies have found that using these
program visualization tools can be pedagogically effective if
students actively engage with the tool [18], [19].

However, as program complexity increases, such visualiza-
tions can become confusing [20], and navigating the traces
may become-time consuming. Alternatively, recent debugging
interfaces like Whyline [21] and Theseus [22] provide an
overview of execution behavior and let a user find the cause
of a bug through interactive question-answering or retroactive
logging. Inspired by this prior work, this paper aims to
augment program visualization to enable more efficient review
of program traces. One design challenge is how to focus
a student’s attention on the differences between what the
code does and what it is expected to do. Previous work has
demonstrated that important divergent runtime behavior can
be detected and highlighted in the domain of web application
debugging [23], [24], [25]. To apply similar design insights
debugging programming assignments, we leverage a program
synthesis technique [8] that identifies potential corrections to
programming assignments; with a corrected version of code,
we extract traces that highlight the difference in the code’s
current and expected behavior.

III. FORMATIVE STUDY

To understand the current limitations of automatic hint
delivery and opportunities to improve it, we observed the hint-
giving practices of teachers in a local introductory CS course
as they helped students debug incorrect code for programming
assignments. We analyzed 132 Q&A posts from the CS
course’s online discussion forum where instructors answered
students’ debugging questions. Additionally, we conducted a
semi-structured interview with a teaching assistant from the
same course to gain insight into the patterns of hint-giving
that we observed in the online discussions. This analysis
yielded three design guidelines that motivated the design of
TraceDiff’s hint-giving affordances.

A. Procedure

We collected 132 posts from the discussion board that
pertained to one assignment from a recent course offering.
One author performed open coding on all posts, eliciting
common themes in the structure and content of teachers’
hints. Two authors reviewed the themes together, refining
the themes into types of hints, and deciding on definitions
and concrete examples for each of type of hint. The two
authors performed axial coding independently, tagging the
types of hints they observed in each teacher response. These
two authors resolved all discrepancies in tagging results by
reviewing each tag until they reached consensus. Then, the two

authors identified three design guidelines by reviewing high-
level common strategies that share among the themes. After
that, we had a 30-minute semi-structured interview where we
asked what kind of questions the students frequently ask to the
TAs, how TAs answer these questions, and what the high-level
strategy is for appropriate feedback.

B. Design Guidelines

Based on the observation and analysis of teachers’ hint-
giving strategies, we describe three design guidelines, which
motivated our interface design of TraceDiff.

D1: Encourage students to explore code execution with a
visual debugger: For novice learners, it is difficult to under-
stand complex code executions without visual aids. Program
visualization tools help with this problem: we observed one
of the most common feedback (19 times) was to tell students
to run their code in Python Tutor [13], an interactive code
visualization tool. Hence the decision of integration the other
hint strategies with the Python Tutor interface.

D2: Describe how actual behavior differs from expected
behavior: Well-designed feedback facilitates productive de-
bugging by illustrating the relationship between the symptoms
and the cause of the error [21], [26]. TAs often diagnose the
student error through abstracting the suggestion or providing
the high-level description of the cause of error (19 times).
““Runtime Error - Maximum recursion depth exceeded in
comparison” message means that you do not have a base case
that can stop the program from running your recursive calls
” (post 60). Although it can be difficult to automate hints
that provide a conceptual description of the student error, TAs
diagnose these kinds of errors by comparing what the code
does with what it is expected to do. “In your n == 1 base
case, you should be calling term(1) and not term(0).
Remember that the term function is only defined from 1 to n
inclusive ” (post 82). Hence the decision to provide feedback
by highlighting behavior that diverges from the closest solution
obtained using a program synthesis back-end.

D3: Refer to concrete code locations and behavior to
provide a starting point for exploration: As the program
becomes large and complex, a visual code execution can be
confusing and difficult to track [20]. To give students focus,
some TAs pointed to specific locations or provided scaffolding
questions (3 times) along with suggesting Python Tutor. “Try
to examine the code in Python Tutor. What happens when you
call accumulate? Is the combiner that you’re passing on to
accumulate making a decision based on the predicate for every
number in the sequence? ” (post 74)

In addition to a position in code, TAs also pointed out a
particular code structure or a specific point in the behavior:
“Look carefully at your else case and also the condition of
your if. Is it doing what you expect it to? ” (post 50) TAs
provided data and behavior hints to help illuminate why a
student’s code fails. “Think about what the counter value is,
and what the total value is. Is this correct? Remember, ping
pong looks like:
total = 1 2 3 4 5 6 [7] 6 5
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Fig. 2. The system interface consists of a code editor (A), a visual debugger (B-C), extracted code traces (D-E), and a slider for interactive abstraction (F).

count = 1 2 3 4 5 6 7 8 9
for the first 9 elements. ” (post 28) Therefore, we designed
our hint interface to give a quick overview of code execution
that focuses attention, while allowing to explore the detail of
the trace with a visual debugger.

IV. INTERFACE DESIGN

When a student submits an incorrect program to the TraceD-
iff system, the system back-end synthesizes a fix that cor-
rects the program. This fixed program will be both correct
and syntactically close to the student’s incorrect submission.
The interface can leverage this pair of incorrect and correct
programs to show the student the difference between the actual
behavior of their submission and expected behavior which
would pass all the test cases for the assignment.

The system executes the incorrect and fixed programs, and
stores a snapshot of both their internal states at every execution
point. Using this information, the system interface, shown in
Figure 2, renders execution traces of both the incorrect (D)
and fixed (E) programs side-by-side. To help the student find
the behavioral differences, the interface highlights where the
incorrect program diverges from the fixed one, both in the
original code (Figure 2 A) and the trace (Figure 2 D, E). The
student can rapidly scan over the causes of the unexpected
behavior by scrubbing the slider (Figure 2 F) below the traces.
The student can inspect these behavioral differences further by
clicking on an item in the trace, triggering the Python Tutor
interactive visualization interface to render the stack frames

and objects at that point of execution (Figure 2 C) and indicate
which line of code was just executed (Figure 2 B).

We design our interface by building multiple prototypes
through a human-centered design process to address all three
design goals identified in our formative study. The main
features of our interface are summarized below:

1) Filter: extracts important control flow steps by identi-
fying a list of variables and function calls that take on
different values to focus students’ attention (D3)

2) Highlight: compares the execution of incorrect and fixed
programs and highlights a point where the control flow
diverges to help identify the bug (D2, D3)

3) Explore integrates the Python Tutor to enhance the
exploration of collected code traces (D1)

4) Abstract: enables the student to interactively map a
concrete value back to the expressions that computed
it and helps locate the cause of the bug (D3)

A. Filter

The system shows execution traces of both the incorrect
and fixed programs side-by-side (Figure 2 D, E). However,
as the execution flow becomes complex, students can be
overwhelmed with too much trace information and find it
difficult to grasp an overview of the behavior. We filter the
execution trace to better focus the student’s attention on
potentially relevant steps (D3). For all variables, function calls,
and return statements, the system compares the sequence of
assigned, passed, or returned values between the two programs

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

110



throughout their traces. All variables, calls, and returns with
equivalent sequences are filtered out, since their behaviors are
identical. Both matching and divergent assignments of values
for the remaining variables are shown in the interface. Figure 3
illustrates an example of the filtering feature.

Fig. 3. Filter function: The system back-end synthesizes a fixed program
and generates execution traces for both the student’s incorrect program and
the fixed program. The system extracts the steps in the traces for only those
variables, calls, and returns that eventually diverge from the fixed program.
(A) illustrates the code traces without filtering and (B) shows the filtered
execution traces of the same programs.

B. Highlight

The filtered traces show both consistent and inconsistent
steps for the incorrect and fixed programs. To help students
locate the error in their program, we identify the first step
where the values (e.g., values of variables, function calls,
and return statements) diverge between incorrect and fixed
programs and highlight it in the interface (see Figure 4).

Fig. 4. Highlight function: Once the system filters the execution traces, it
compares the execution of the incorrect program with the fixed program and
highlights the step where the incorrect control flow diverges from the fixed
control flow.

Figure 4 shows the comparison of the actual and expected
behavior of the same incorrect submission shown in Figure 3.
One can quickly see that the difference in the test result
originates from the accumulate function returning 11, 23,
36, 50, 65, 81 instead of 11, 12, 14, 17, 21, 26. Thus,
this comparison can address guideline D2 by scaffolding the
understanding of the cause of the error.

By comparing the execution history, our system can also
help a student locate the error (D3). When the system detects
that a variable value in an incorrect program diverges from
its corresponding variable value in the fixed program, the

system can highlight the difference between the actual and
expected values. For example, Figure 4 also indicates that
the execution traces diverge when accumulate(add, 11,
1, identity) returns 23 instead of 12, so the error of the
code should be associated with this line. To help students
relate a step in the trace with a position in the code, the
system highlights the relevant line number in the code when
the user hovers over a step. In contrast to existing feedback,
this helps not only to identify the location of the bug, but
also to understand why the code fails by suggesting how this
difference at a particular point affects the return value.

Fig. 5. Explore function: When the student hovers over the execution trace,
the system highlights the line of code (e.g., line 5) responsible for the current
step of the execution. By clicking a step in the execution trace panel (e.g.,
the highlighted step at total = 2), the system shows the corresponding code
execution with the Python Tutor visual interface. Within the visual stack
frame, the system also highlights the variables and function calls that take
different values between the incorrect and correct programs.

C. Explore

Once a student locates a bug, TraceDiff helps the student
understand the unexpected program behavior with visual code
execution (D1, see Figure 5). While the filtering function
can provide an overview of the divergence, it may reduce
the context of the code traces. Thus, to allow the student to
access the full context of the change, we integrated the Python
Tutor [13] visual debugging tool, using brushing and linking to
connect execution traces with Python Tutor’s code editor and
debugger. By clicking a specific function call in the execution
trace, the system jumps to the relevant step and visualizes
the program state at that step using the Python Tutor visual
debugging tool.TraceDiff highlights variables in the Python
Tutor visualization that differ between the actual and expected
program behavior in red.

D. Abstract

While the highlighting feature helps compare low-level
(concrete) data and behavior between the correct and incorrect
programs, it does not help link between concrete differences
in values and differences in high-level (abstract) structure
of the code. One possible way to address this issue is to
visualize both the incorrect and fixed programs with the
Python Tutor interface. However, we found that comparing
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the code execution with multiple diagrams was difficult to
comprehend, particularly when the control flow is significantly
different. Instead, we design an alternative interface inspired
by Bret Victor’s learnable programming [27] and a ladder of
abstraction [28].

Fig. 6. Abstract function: By scrubbing the slider, the system converts
the concrete value into the abstract expression that shows how the value
is computed. It enables the student to rapidly scan over the causes of the
unexpected behavior by comparing differences in code expressions.

Figure 6 A shows the behavior of the following incorrect
code:

def a c c u m u l a t e ( combiner , base , n , t e rm ) :
t o t a l = base
i = 1
whi le i <=n :

t o t a l = combiner ( i , t e rm ( i ) )
i = i +1

re turn t o t a l

This program is almost correct, except the first argument of
the combiner call is wrong. To pass all the test cases,
the expression combiner(i, term(i)) on line number
5 can be changed to combiner(total, term(i)) to
correctly accumulate the value. The difference in concrete
values assigned to total that are returned by the combiner
function call, shown in Figure 6 A, does not reveal the
incorrect argument in the combiner function call. To help
students map the difference in concrete values to the incorrect
expressions in the code, students can scrub the slider to see
the expressions responsible for computing differing concrete
values (Figure 6 B). The information the student can see as a
result of that scrubbing indicates that the second argument of
the add function is correct, but the first argument is different.
This feature helps uncover the cause of the error, particularly
for complex mistakes (D3).

V. IMPLEMENTATION

The front-end of TraceDiff is written in JavaScript and
depends on D3.js for data-binding and drawing the user

interface. Our back-end comprises four components that per-
form code transformation synthesis, execution trace collection,
trace differencing, and value abstraction. The source code of
both front-end and back-end of TraceDiff is open source and
available on GitHub1.

A. Code Transformation Synthesis

Code transformations enable TraceDiff to correct a student’s
incorrect code so the behavior of the incorrect and corrected
code can be compared. To learn these transformations, we
leverage Refazer [8], a tool that, given pairs of incorrect and
corrected code, learns general, code-correcting abstract syntax
tree transformations. Refazer represents these transformations
in a Domain-Specific Language (DSL). It applies algorithms
that deduce the set of transformations that can be generated
from the code examples and algorithms that rank these trans-
formations so that the top ones have higher probability to be
the ones that will be successfully applied to other programs.

For each programming assignment, we extracted pairs of
incorrect and corrected code by mining student submission
histories to a course autograder. Each pair contains a cor-
rect submission according to the test cases and an incorrect
submission, which is the first submission before the correct
submission.

Once we have learned a set of code transformations for an
assignment, we fix incorrect code by applying code transfor-
mations to incorrect submissions one-by-one. When a code
transformation can be successfully applied and causes the
code to pass all assignment test cases, the code is marked
as corrected. We save this corrected copy of the submission,
so that its execution trace can be compared to the trace of the
original incorrect submission.

B. Execution Trace Collection

We use the Python debugging module pdb [29] to collect
execution traces of both the incorrect and corrected code. We
step through both versions of the code separately, serializing
the program state at each step. The program state comprises
the names of local and global variables, values of those vari-
ables, the stack, and the line number of the currently executing
code. This information allows us to later compare sequences
of values each variable from each program’s execution.

C. Trace Differencing

TraceDiff extracts the key events from the collected traces
by filtering out variables and calls that do not lead to a
divergence between incorrect and fixed programs. Since the
sequences of correct and incorrect code execution may have
different control flow or different line numbers, TraceDiff
performs the comparison on the sequence of updates of each
variable value and return value of a function, and detects
value updates which differ at the same relative index in their
sequence. For example, the code shown in Figure 5 has six
variables (combiner, base, n, term, total, and
i). Among these variables, only total has sequences of

1https://github.com/ryosuzuki/trace-diff
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Fig. 7. Example AST for the statement total = combiner(total,
term(i)) on top; dynamic values observed at runtime below.

updated values that diverge (e.g. [0, 2, 4, 6, 8, 10]
and [0, 1, 3, 6, 10, 15]). The other variables have
the same update sequences (e.g., i is the same sequence of
updates [1, 2, 3, 4, 5, 6] for both incorrect and fixed
code trace). This technique allows us to extract only traces for
the key variables the student should pay attention to.

D. Abstracting Values into Expressions

To abstract the observed values back into expression form,
we leverage a combination of dynamic and static program
analysis techniques. Given the line of code, we first parse the
line into its Abstract Syntax Tree (AST). For example, the code
in Figure 5 at line 5 total = combiner(i, term(i))
can be parsed into the tree shown in Figure 7, top.

We recursively evaluate each AST node with the current
state obtained from the dynamic program analysis. For
example, when the internal states are combiner =
add, term = identity, i = 2, total = 4, we
can construct the matching value tree shown in Figure
7, bottom. We can traverse this tree from the single
output value back up to intermediate values and back to
corresponding AST nodes to generate abstract expressions.
Traversing this tree generates the following sequence of
increasingly abstract expressions: 4 → add(2, 2) →
combiner(2, 2) → combiner(2, identity(2))
→ combiner(2, term(2)) → combiner(2,
term(i)) → combiner(i, term(i))

All concrete values in the run-time execution can be ab-
stracted until we get the root node of the tree (e.g., total
= combiner(i, term(i)) in Figure 7). However, if the
system allows students to see all abstraction steps, it may
reveal the underlying actual code. Therefore, we heuristically
set the three-level of abstraction as the stopping point to avoid
revealing a bottom-out hint.

VI. EVALUATION

To see if TraceDiff can help students debug their code ef-
ficiently, we conducted a controlled experiment and evaluated
our interface alongside the Online Python Tutor interface.

A. Research Questions

• RQ1: Can TraceDiff help students identify and fix more
bugs than when just using Python Tutor?

• RQ2: Can TraceDiff help students fix bugs faster than
when just using Python Tutor?

• RQ3: Which tool, TraceDiff or Python Tutor, do students
perceive to be more useful for fixing bugs?

B. Method

We recruited 17 students (male: 15, female: 2; undergrad-
uate: 13, graduate: 4) from a local university to participate in
this study. All participants major in computer science and have
experience in the Python programming language. In prepara-
tion for this study, we collected a dataset of incorrect student
submissions to programming problems assigned in CS1, an
introductory computer science course at our university.

At the start of each study session, we gave each participant
a 6-minute tutorial on both Python Tutor and TraceDiff to
familiarize them with each interface. We then gave each
participant four incorrect submissions (two for TraceDiff and
two for Python Tutor) and asked to perform two tasks for
each problem: (1) point out the location of the bug and (2)
fix the bug. For each incorrect submission, we explained the
programming assignment to the participant and then gave them
ten minutes to perform the tasks. Some of the incorrect
submissions had multiple bugs to fix, but we did not mention
how many bugs the code has. We did not provide means
for the participant to run the program or check if they had
successfully fixed the code, so multiple attempts to fix the
code were not allowed. Once the participants were satisfied
with their fix, we ran their code against the test suite to check
if the fix had corrected the code. After the session, we asked
each participant to rate and explain their experience using each
interface. We asked participants to evaluate the usefulness of
the interfaces along four different aspects: (1) locating the
bug, (2) understanding the bug, (3) fixing the bug, (4) learning
debugging skills. Finally, we conducted a post-survey where
participants could compare the experience of using both tools.

C. Task

Participants were given incorrect submissions from the
following three CS1 programming problems:

• Product: takes as parameters a positive integer n and a
unary function term, and returns the product of the first
n terms in a sequence: term(1)∗term(2)∗· · ·∗term(n).

• Accumulate: takes as parameters the same n and term
function as Product as well as a binary function combiner
for accumulating terms, and an initial value base. For
example, accumulate(add, 11, 3, square) returns 11 +
square(1) + square(2) + square(3).

• Repeated: takes as parameters a unary function f and a
number n, and returns the nth application of f . For exam-
ple, repeated(square, 2)(5) returns square(square(5))
evaluates to 625.

Our dataset contained 497, 576, and 579 incorrect student
submissions for the product, accumulate, and repeated
problems, respectively.

For each problem, we selected two incorrect submissions
that contain representative mistakes. To make this selection,
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we first clustered student mistakes into clusters that share a
similar error or mistake. We adopted the clustering algorithm
from previous work [5]. We then sorted the clusters by the
number of student submissions they contained to identify the
most popular mistakes. We systematically chose the first two
clusters as representative mistakes. If the second cluster shares
the similar fix with the first one, we then skip the second one
and pick the next one until the final two clusters have the
different mistakes. Once we identified the two clusters, we
chose one incorrect submission from each cluster.

Through the pilot study session, we found there is a
significant learning effect when the participant works on the
same problem. We minimized this effect by using a different
programming problem for each condition. We also observed
differences in problem difficulty. For example, some partici-
pants found it more difficult to work on the repeated problem
compared to the accumulate problem. Therefore, we also
shuffled the problems for each condition.

D. Result

Table 1. Summary of Study Results
(score is average (SD) score of 7-point Likert scale)

TraceDiff Python Tutor
Correctly identify bugs 82.4% 76.5%
Fixed bugs 70.1% 61.8%
Average time to fix the bug 5:21 (2:49) 5:03 (2:42)
Overall usefulness 6.4 (0.9) 4.7 (2.0)
Help to identify the bug 5.9 (1.2) 4.8 (1.7)
Help to understand the bug 5.7 (1.6) 4.6 (2.0)
Help to fix the bug 5.3 (2.0) 3.9 (2.4)
Improve debugging skills 4.9 (1.9) 4.7 (1.9)

RQ1: Participants using TraceDiff correctly identified
82.4% of the bugs and fixed 70.1% of all attempts; participants
using Python Tutor correctly identified 76.5% of the bugs and
fixed 61.8% of them. These differences are not statistically
significant by the Chi-square test (identify the bug: χ2 = 0.26,
DF = 1, p > 0.6; fix the bug: χ2 = 0.09, DF = 1, p > 0.7).

RQ2: We did not observe a significant difference in time
spent to fix the bug (Average time TraceDiff: 5m 21s, Python
Tutor: 5m 03s) by the Wilcoxon signed-ranked test (Z = 0.11,
p > 0.9). Although we expected that participants would take
less time using TraceDiff, we observed that many participants
interacted with Python Tutor to make sure they correctly
identified the bug using TraceDiff.

RQ3: Although no significant differences were found in
the quantitative measures, qualitative feedback from the par-
ticipants suggests the potential advantages of TraceDiff over
Python Tutor interface. 64.7% of the participants believed that
TraceDiff was more valuable for identifying and fixing bugs
and 29.4% thought that both tools were equally important
(only 5.9% preferred Python Tutor). One participant (P1)
mentioned that when using TraceDiff he just needed check
when the variables had different values to identify the problem
in the code. In response to 7-point Likert scale questions, par-
ticipants significantly preferred TraceDiff over Python Tutor in

four out of five dimensions with Wilcoxon signed-ranked tests:
overall usefulness (Z=-2.7, p<0.05), usefulness to identify (Z=-
2.6, p<0.05), understand (Z=-2.2, p<0.05), and fix the bug
(Z=-2.3, p<0.05). Most of the participants liked the features of
TraceDiff (variable filter: 5.9, SD=1.3; comparison of expected
behavior: 6.0, SD=1.5) when asked if each feature helped to
focus their attention and understand the incorrect behavior.
Finally, all participants strongly agreed they would like to use
TraceDiff in programming classes (6.8, SD=0.5).

VII. DISCUSSION

Although the participants significantly prefered TraceDiff
(RQ3), we did not find significant differences in quantitative
measures of debugging performance (RQ1 and RQ2). Based
on the observation and the participants’ feedback, we would
like to discuss several possible reasons for this. First, both
PythonTutor and TraceDiff presume a certain minimum level
of knowledge about the Python language. Students who did not
meet that minimum knowledge level were unable to complete
some debugging tasks regardless of tool used.

Second, some of the selected bugs may have been too simple
for the students, which may allow them to fix those bugs
regardless of tool used. Although we tried to select represen-
tative and different types of bugs, creating realistic debugging
tasks for user studies is a common difficult challenge [23].
On the other hand, for one of the incorrect submissions, only
participants using TraceDiff were able to fix it (5 out of 9),
while none of the 8 participants using Python Tutor could fix
it. The correct fix of this submission was:

− re turn r e p e a t e d ( compose1 ( g , f ) , n−1)
+ re turn compose1 ( r e p e a t e d ( g , n−1) , f )

Participants particularly appreciated the comparison feature of
TraceDiff, which can illustrate the difference in the control
flow and give the idea of swapping the two calls, while this
mistake generates a seemingly correct control flow on Python
Tutor, which makes it difficult to identify where the error
comes from. We believe our tool can be more efficient when
fixing such complex mistakes.

Finally, since TraceDiff only visualizes a single point where
incorrect code diverges from correct code, some students
quickly guessed at both the location and extent of the bug
and submitted a fix that was only partially complete. In our
study, this was the student’s first and only shot at fixing the
code as we did not allow multiple attempts. However, if they
are allowed to iteratively debug their bugs, they could have
received feedback from TraceDiff during the next iteration,
which would help them complete their fix. Therefore, as future
work, we are interested in deploying TraceDiff to an actual
programming course to evaluate the effectiveness of our tool
in more realistic situation.
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