Writing Reusable Code Feedback at Scale
with Mixed-Initiative Program Synthesis

Andrew Head*, Elena Glassman*, Gustavo Soares*,
Ryo Suzuki, Lucas Figueredo,
Loris D'Antoni, Bjorn Hartmann

* These three authors contributed equally to the work.

Boulder = NGB UnVeRsITY OF wiSCONSIN ST

Universidade Federal : -
B8Y G Campina Grande @l University of Colorado WISCONSIN

When Writing Feedback on Student Code,
Teachers Can Draw on Deep Domain Knowledge

Incorrect Student Code Submissions Teacher Comments

Submission 1 X

1,6 +1,8 @@
def accumulate(combiner, base, n, term):
def prtii(combiner, n, term): . . y .
it nedl What happens when n is zero? Hint: look at lecture ¥'s slide
return term(n)
return combiner(term(n), prtii(combine
return combiner(base, prtii(combiner, n, t¢

Submission 2 X

1,8 +1,10 @@
def accumulate(combiner, base, n, term):
value = term(n)
def find_value(combiner, base, n, term, val
if n==1:
return combiner(base, value)
else:
return find_value(combiner, base, r
return find_value(combiner, base, n, term,

Motivation

In lieu of Teacher-Written Feedback,
Autograder Shows Test Cases

A A _ r —_—— — A . _a f a - -\

1 Adaf nreadiiect+(n +arm) .

1 def product(n, term):
total, k=1, 1
while k <= n:
total, k = total x term(k), k + 1
return total

Student Submission

OO EWN

Run tests again

...but there’s still a
. gulf of evaluation.

|: T Test results: All tests succeeded

1
E Test Input Result Expected Output
Test Case Results - 2E
X Z
4 3 e 2 (5, lambda x: x), — 120 120 -
n 4 4 3 (3, lambda x: x * Xx), — 36 36
— M (5, lambda x: X % X)), . 14400 14400

Course Autograder

Motivation

Program Synthesis Techniques Can Shrink the Gulf

by Automatically Finding and Suggesting Bug Fixes for Students
1

def product(n, term):
total, k =,0, 1
while k <=" n:
total, k = total * term(k), k + 1
return total

O LHEWN -

Student Submission

Run tests again

In line 2, change total = 0 to total =1

Test Input Result Expected Output | ,

1 (3, lambda x: x),

Tost Case Results 2 & wman o, | ---Put the automatically generated feedback is |
S o T i x =) often mechanical, formulaic

4 (5, lambda x: x % x)f

Can we combine teachers’ deep domain knowledge with
. program synthesis to give students better feedback?

Motivation

Learning Code Transformations

from Pairs of Incorrect and Correct Submissions

Student 1 fixes
iterative solution

Student 2 fixes
recursive solution

Generalized code
transformation

def product (n
total, k =
while k<=n:

— total =

+ total =

k = k+1
return total

L,

totallxk
totallxterm (k)

term) :
1

+

def product (n,
i1f (n==1) :
return 1

return product (n-1,

return product (n-1,

term) :

Cermy*n
termjixterm(n)

Insert

Motivation

<exp> * <name> - <exp> |* term(<name>)

Incorrect Student Code Submissions

Submission 1 x

@@ _1;6 +118 @@

def accumulate(combiner, base, n, tei

def prtii(combiner, n, term):
if n==1:
return term(n)

return combiner(term(n), prt:

6 | + if n==0:
7+ return base
' return combiner(base, prtii(comb

Submission 2 X

@@ -1,8 +1,10 @@

def accumulate(combiner, base, n, te

value = term(n)
3 + if n==0:
4 @+ return base

def find_value(combiner, base, n,

if n==13}

return combiner(base, val

else:

return find_value(combine
return find_value(combiner, base,

Motivation

We Scale Up a Little Teacher-Written Feedback by
Attaching It to Code Transformations

Code
Transformation
(add base case)

|

|

|
Teacher Comments

What happens when
his zero?

Hint: look at lecture 97
slides on base cases.

Two Interfaces for Attaching Feedback to
Code Transformations

{;J MistakeBrowser: giving feedback on clusters

Learn transformations from Autograder Collect feedback from teachers

A A A

x incorrect
X submissions

O finalcorrect @ —~———~Fp > """~~~
submission

Feedback Bank
Related Systems: Divide and Conquer [ITS14], AutoStyle [ITS16]

Motivation

Two Interfaces for Attaching Feedback to
Code Transformations

E‘p/@ FixPropagator: attaching feedback to individual fixes

L earns transformations from and collect feedback from...

Teacher Teacher fixes

oicks a submission and

submission writes a hint

Feedback Bank

Motivation

Our Program Synthesis Backend

~ ™
Refazer (/he.fa.'ze(h)/)

Means “To redo.”
_ /

Using Refazer [ICSE17] as a backend, our systems
learn bug-fixing code transformations.

Motivation

Contributions

e An approach for combining human expertise with
orogram synthesis for delivering reusable, scalable code

feedback

e Implementations of two different systems that use our
$, MistakeBrowser

approach: FixPropagator

* In-lab studies that suggest that the systems fultill our
goals, also inform teachers about common student bugs

Outline

Related Work
Program-Synthesis

Systems

Evaluation

System Design

--

Suggest fixes, feedback

Interfaces for

Teachers
Refazer

Program E
Synthesis), T

[ICSE "17]

[L@S "17]

‘-----------..
D . -
L BN BN BN BN BN BN BN BN BN BN BN BN BN B BN BN BN BN BN BN

Demonstrate fixes, write feedback

--

Mixed-initiative workflows

Systems

Uploads test cases Writes feedback
for each cluster

Test 1
Teacher TGT N J
Learns Finds transformation
transformations that fixes next
| x Trans 1 submission
________ R Irans 1 ... Trans N A
1% Clusters submissions - and returns
o Trans N , feedback
by transformation written for it
System P4 4
X z x incorrect | ﬁ]
o ° x submissions , v
o final correct SmeltS
submission INncorrect
Submit code code
... Next Semester
Students

Systems: MistakeBrowser

Submissions Hints

Select all submissions

Assignment description

Return the product of the first n terms in a sequence.

n -— @ positive integer T
term —— a function that takes one argument
>>> product(3, identity) # 1 % 2 = 3 def product(n, term):
6 if ne=1:
>>> product(5, identity) # 1 % 2 %x 3 x4 % 5 return 1 £
120 else:
>>> product(3, square) # 172 % 22 % 3°2 : - return termin)=term(n-1) m Reuse previous hints
36 . 5 | + return term{n)=preducti{n-1, term)
>>> product(5, square) # 172 % 272 % 372 % 472 % 5°2 Test feedback
14400
Input Expected Actual
product(5, identity) 129 20
Cluster
Submission 2
Cluster 1 n
def product(n, term):
Examples of applied fix total = 1
def aln):
if n<=1:
~ return term(n)*term(n-1) return 1
def b(n):
- return term(n)*product(n-1, term) return term(n)
: - return b(n)xb(n-1)
+ return bi{n)xproduct{n-1, term)
return ain)
Test feedback
Input Expected Actual
product(5, identity) 129 20
Submission 3

@@ -1,5 +1,5 @@
1 1 def product(n, term):
17 N==1"

Systems: MistakeBrowser

Submissions

Select all submissions

Submission 1
def product(n, term):
if n<=1:
return 1
else:
- return term{n)sterm(n-1)
+ return term{n)=product(n-1, term)
Test feedback
Input Expected Actual
product(5, identity) 129 20
Submission 2
def product(n, term):
total = 1
def aln):
if n<=1:
return 1
def bin):
return term{n)
- return bin)xb(n-1)
+ return bi{n)xproduct{n-1, term)
return aln)
Test feedback
Input Expected Actual
product(5, identity) 129 20
Submission 3

@@ -1,5 +1,5 @@
1 1 def product(n, term):
17 N==1"

Systems: MistakeBrowser

Hints

Looks like you're
writing a recursive
call. What might you
be missing to enable
recursion?

m Reuse previous hints

Systems: MistakeBrowser

But Not All Classes Have Submission
Histories for Hundreds ot Students

incorrect

X ..
submissions

Submit code

Systems: MistakeBrowser

Uploads test cases Accepts or modifies

Picks Fixes Writes suggested fixes,
Test 1 | submission Yhint feedback
Teacher TGTN J t
Learns Xloll™ .
transformations, "o Suggests fixes
x x5 " ~—"" and feedback
x™ makes clusters, Returns
*x | x ?ttaC;:I:esk ' feedback to
eedbac students |7
System NS [
RE 1%
incorrect « x x \L
submissions x <
Submit code
Students

Systems: FixPropagator -,

9

Student Submission

You can edit this code. Show original @© Edit Show diff

1 def product(n, term):

§ return term(n) * product(n - 1, term)

Run tests again

Test results: Some tests failed

Test Input Result Expected Output
1 (3, lambda x: x), — RecursionError 6 !
2 (5, lambda x: x), — RecursionError 120 !
3 (3, lambda x: x * x), —+ RecursionkError 36 !
4 (5, lambda x: x * x), — RecursionError 14400 !

Print output (test case 1)

RecursionkError: ('maximum recursion depth exceeded’,)

[This test case produced no console output.)

Back Next

Systems: FixPropagator

Feedback

Notes Add

o

Systems: FixPropagator

New Student Submission with Same Bug Suggested Fix

Student Submission

Y

You can edit this code. e Show original Edit Show di Student error detected.
1 def product(n, term): This wrong answer can be ‘fixed" with the edits for submission 281 .
2 if n I= 0O: This is the fix:
3 return term(n) * product(n - 1, term)
4

def product(n, term):

Run tests again + if n == @:

+ return 1
if n l= 0:
» -
Test results: Some tests failed return term(n) ° product(n - 1
Test Input Result Expected Output
« Apply this fix to the student's code

1 (3, lambda x: x), — TypeError “ !

2 (5, lambda x: x), — TypeError 120 !

3 (3, lambda x: x * x), — TypeError 36 !

4 (5, lambda x: x * x), — TypeError 14400 !

Print output (test case 1)

Systems: FixPropagator

o

- Another student with this same problem has already been given
feedback. Do you want to use the feedback for them here?
-
-~ Use existing feedback -
o
- Notes Add

Systems: FixPropagator

Feedback

9

Student error detected.

This wrong answer can be "fixed" with the edits for submission 281 .
This is the fix:

def product(n, term):
+ if n == O:
+ return 1
if n 1= 0:
return term(n) * product(n - 1

«- Apply this fix to the student's code

Both Fixes and
~ FeedbackCanBe | A
: Further Moditied e

- Notes Add

{ What should happen when n == 07 X ‘

Systems: FixPropagator

A Study of the Systems

Participants: Current and former teaching staff from CS'

[

.

[

E—

} MistakeBrowser (N = 9) ?ﬁ FixPropagator (N = 3)

Interface Walkthrough (5 mins.)

Main Task (30 mins.): Giving feedback on student submissions
Measurements: Feedback, Manual corrections, Response to feedback
recommendations (accepted, changed, rejected), Between-task surveys...

Qualitative Feedback: Survey and Post-interview

A TE]}

?ﬁ 1. Can a few manual corrections fix many submissions?

A TE]}

@®. FixPropagator propagates fixes from dozens of
ﬁ corrections to hundreds of submissions.

A TE]}

FixPropagator propagates fixes from dozens of
corrections to hundreds of submissions.

A

Median # submissions given feedback by...

Teacher

FixPropagator
0 50 100 150 200 250

* Fixes were propagated within minutes
(median = 2m20s, o = 7m34s for each correction).

A TE]}

C} 2. How often is a teacher’s feedback
relevant when it is matched to other
students’ submission?

A TE]}

Feedback propagated with FixPropagator was
correct a majority of the time, but not always.

Teachers reused feedback a median ot 20 times,
moditying it a median of 6 times (30%).

Generalizable Non-Generalizable
Comment Comment
"Check it you have the “Your starting value

product of the correct of z should be a
number of terms.” function, not an int.”

A TE]}

{—J MistakeBrowser created conceptually consistent
clusters of student bugs.

A TE]}

{—J MistakeBrowser created conceptually consistent
clusters of student bugs.

40%

30%

20%

% of clusters

10%

0%
No or 50% 75% Almost 100%
“No idea” 100%

Do these submissions share the same misconception?
Responses for N = 11 clusters

A TE]}

Evaluation Questions

1. Can a few manual corrections fix many submissions?

With a median of 10 corrections, FixPropagator suggested fixes
for a median of 201 submissions.

2. How often is a teacher’s feedback relevant when it is matched to
another student submission?

Matched feedback was relevant ~75% of the time.

A TE]}

Limitations

* The impact of teacher feedback on student
learning outcomes has not been evaluated

e Code transformations were created that fix
submissions one or two bugs away from correct

A TE]}

Conclusion

We present an approach for combining human
expertise with program synthesis for delivering
reusable, scalable code teedback.

And two systems implementing this approach:

e

[;J MistakeBrowser E‘yf”’ FixPropagator

Conclusion

We present an approach for combining human
expertise with program synthesis for delivering
reusable, scalable code teedback.

And two systems implementing this approach:

e

[;] MistakeBrowser E‘yfuf FixPropagator

Questions?

