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Q: How does the ModalManager prevent scrolling? AEsEENEgRr Answer

It prevents scrolling by using the handleContainer ...
TS ModalManager.ts ﬂ\

Descriptive tour of code

206 export class ModalManager { dd() t0) 0 The code sets scrollContainer.style.overflow

249 mount(modal: Modal, props: a moun remove to hidden to lock scrolling ... @ M walk me here

251 const containerInfo = this.

containers[containerIndex]; Replayable Walkthrough

252 | started here ...

253 if (!containerInfo.restore) { props emsletonainer() export class ModalManger {

254 containerInfo.restore = . | decided to look for more info about mount
handleContainer(containerInfo, \")[ mount (modal: Modal, props: |
props); m <l

255 } k

256 +

Figure 1: Overview of Trailblazer. Trailblazer helps developers answer questions that cut across a code base (@). It explores the code with
an agent that performs incremental static analysis over the source code (). The tool presents answers as a combination of a concise natural
language summary, a descriptive tour of key discovered snippets, and replayable annotated walkthroughs (). By combining flow analysis
and Al, Trailblazer accumulates answers as annotated, replayable program traces that help developers understand not just what the answer

is, but how it can be reached.

Abstract

Developers often find themselves asking questions that cut across
a code base. Answering these questions requires gathering relevant
facts and tracing flow through the program. Yet today’s tools offer
limited support for answering these questions. Developers can ei-
ther use imprecise Al tools that ignore flow or flow-tracing tools
that impose a great number of choices. In this paper, we introduce a
new kind of tool that answers questions better by bringing together
elements of both Al and flow. We instantiate this idea in Trailblazer,
a system underpinned by an Al agent that simulates an informa-
tion forager, iteratively tracing program dependencies in search
of answers. Then, Trailblazer packages information it found into
an answer digest, which includes interactive, annotated traces of
exploration. These traces can be stepped through to help developers
orient to the code and find where the answer is distributed within
it. In a lab study, Trailblazer helped participants answer questions
more efficiently and gain greater familiarity with program flow
than an Al question answering baseline. This shows how Al agents
can leverage program flow to bring additional structure and clarity
to its answers.
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1 Introduction

A central challenge in understanding modern code bases is an-
swering reachability questions [26, 27], which ask how control or
data flows across a program. For example, a developer might ask
of a UI components library, “How does this code disable scrolling
of the window when a modal dialog is showing?” Answering these
questions requires developers to explore code paths from where a
behavior begins to its outcomes and effects. These questions are
both common and challenging to answer [26, 27].

One reason reachability questions are so difficult to answer is the
complex structure of real-world programs. Nested function calls,
callbacks, event handlers, and dynamic dispatch add indirection
that make it hard to see how a behavior is implemented at a glance.
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Answering such questions is therefore characterized by backtrack-
ing, keeping track of multiple paths, and constant judgments about
which paths to follow [26]. For situations like these, IDEs provide
tools for tracing flow, from primitives like “Go to Definition” to
tools that afford stepping through the data flow [1]. Yet more ad-
vanced affordances have been developed in research tools [3, 28, 44].
While these tools accelerate tracing code flow, they require a great
deal of judgment from the user for search to progress.

More recently, Al-based tools (e.g., [10, 17]) have been integrated
into IDEs to provide question answering support. These tools reduce
constant judgment calls to wording a question and reviewing an
answer. They supply answers in the form of readable text with
snippets from the code. However, the current implementations of
these tools may not guarantee that the answers actually reflect the
code, nor do they help paint an adequate picture of the flow of the
program as it pertains to the user’s question.

Taken together, these shortcomings suggest the need for a new
kind of tool that blends the precision of flow analysis with AI’'s
ability to decide and distill (Figure 1). In this paper, we develop Trail-
blazer, an intelligent interface for the IDE that answers developer
questions with annotated, replayable, agent-discovered program
traces. Trailblazer works by simulating the behavior of an informa-
tion forager, using tools the developer has in the IDE to trace flow
(e.g., “go to definition” and others). In doing so, it discovers program
traces that answer questions. The innovation of Trailblazer is in
its presentation of results. Answers are shown as replayable, anno-
tated step-by-step traces. Developers replay this trace to see how
an answer was found and to understand the structure of the code
that connects the trace together. The entry point to these traces is a
program “tour,” or a set of waypoints from the agent’s exploration
that together work to answer the question.

To understand Trailblazer’s effect on question answering, we
conducted a within-subjects lab study. 20 participants answered
reachability questions using either Trailblazer or a modern question-
answering programming assistant. When reviewing answers given
by Trailblazer, participants completed search tasks more efficiently.
They demonstrated better recall of the program flow essential to
the answer in a surprise code ordering task. These findings suggest
the value of “trailblazing” agents that discover answers by crawling
complex search graphs and demonstrating their findings in familiar
representations of search to the user.

This paper makes the following contributions:

o A formative study that clarifies obstacles and information
needs encountered with typical code analysis IDE tools.

o Trailblazer, a tool that answers reachability questions with
replayable, annotated, agent-discovered program traces.

e Evidence from a lab study that suggests Trailblazer leads to
answers more efficiently, with greater acquired familiarity
of the program flow.

2 Background and Related Work
2.1 Reachability Questions

When working in a code base, developers often need to find out
how disparate parts of the code connect to each other. For exam-
ple, they ask questions like “What is the original source of this
data?” or “What parameter values does each situation pass to this
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method?” [27] These questions require identifying feasible paths
through a program and locating the code structures where relevant
behavior occurs. They are often called reachability questions [26].

Reachability questions are common in many development tasks,
including debugging, implementation, code review, and refactor-
ing [24, 26, 42]. Prior work has revealed them as not just frequent,
but also central to progressing in programming tasks [26, 27]. How-
ever, reachability questions can be difficult to answer. The infor-
mation needed to answer them can be scattered across files, buried
in layers of indirection, or hidden behind patterns like event dis-
patch or dynamic dispatch [26, 27]. Developers must decide where
to begin, which paths to follow, and how far to go, often without
strong cues to guide them [41]. While code navigation tools in the
IDE can help developers answer them, they also require developers
to piece together answers from long lists of low-level results [26].

2.2 Information Foraging Theory

In our work, we describe information foraging theory (IFT) as
providing a template for designing autonomous components of
tools for answering reachability questions. IFT models search as
the iterative exploration of information patches with continuous
judgments of which patches to explore [37, 38]. Some of its earliest
applications focused on modeling web browsing behavior [7, 8],
and since it has become an influential model for describing program
debugging [16, 29] and code navigation [34].

We borrow the following constructs from IFT. In IFT, there is
a predator (in our case, a developer) searching for prey (such as
where a value is used in a program). The predator attends to cues in
the code (e.g., identifier names, comments). These cues offer “scent,”
or a sense of how likely further investigation will lead to useful
information. Developers follow scent to information patches, or
sections of code, that may contain the prey. As they do so, they
attempt to maximize insight while minimizing navigation cost.

2.3 Tools for Answering Developer Questions

Given the difficulty of answering reachability questions, tools have
been developed to help developers answer them. One class of tools
helps programmers trace lines of computation across their pro-
grams. For instance, slicing tools like Whyline [21, 23] and Flow-
istry [9] allow programmers to query for all lines of code related to
a selected snippet. The tools use dependency analysis to find lines
affected by or affecting the snippet [22]. Other tools [3, 28, 50] have
supported navigation and review of programs as if they were trees
or graphs. While such tools can be useful, there is also only so much
support they can provide. Graph-based views scale poorly as a code
base becomes structurally complex. Program slices can also become
quite long if strict in its dependency analysis, assuming 10-50% of
the source program length [4]. Trailblazer aims to get around these
issues by combining a rough dependency analysis approach with
an Al that filters what users are shown. Code structure is conveyed
through a representation of a program as a pruned tree.

Another way to support developers in answering reachability
questions is by structuring their workspace to better expose a code
base and interrelationships between modules. Several tools have
been built to do just this [6, 12, 18, 43]. Structural information
can also be brought to where developers need it. For instance,
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ReachHover [52] reveals structural context in hover popups with
the intent to convey context about a code element under inspection.
Trailblazer shares a similar goal of bringing information about far-
flung code into one place, in its case in the form of a digested code
tour and an annotated walkthrough of agent exploration.

2.4 Agents in Software Development

There is a growing body of work on developing agents to assist
with software development tasks.In this paper, we use the term
agent to refer to an autonomous system that makes sequential de-
cisions when performing complex, exploratory tasks. Agents have
been developed not just for code generation [10, 17], but also for
tasks like debugging [2], test creation [20], and pull request cre-
ation [32]. Some tools [10, 17] bring suggestions and interactive
editing affordances into the editor. Recent research has introduced
new methods for agents to perform exploration and multi-step plan-
ning [25], hierarchical localization of repository-scale issues [48],
patch generation [45], timeline-based multi-agent coordination [14],
and structured workflows for navigating technical documents [13].

HCI researchers have meanwhile been exploring how to incor-
porate Al into effective programming workflows. One class of tools
explored is autonomous agents that collect context, make decisions
across steps, and interact with the environment. ROBIN [2] does
this to assist with debugging. Pail [53] does this to stage design
alternatives for the programmer [53]. Fang et al. [15] add to this
space by visualizing the evolution of code and data with a history
graph that supports interactive exploration. One challenge has been
to expose an Al’s “thought process” These tools expose the current
focus of an Al collaborator in the code [39], and visualize the steps
taken by an Al in assistive data analysis [49].

Complementing these technologies are intelligent interfaces that
have sought to help developers understand their code, whether de-
composing algorithmic programming problems [31], relating code
to outputs and explanatory text [30], or explaining the code that the
AT has generated [51]. Closely related to our work is DEDALE [11]
which, given a code base, provides an explanatory map that fol-
lows along the lines of control and data flow. Where DEDALE
explanations are offline and per-code base, Trailblazer provides
answers to specific questions accompanied by walkthroughs and
tight interconnections with the code in the editor.

3 Formative Study

In the first stage of our research, we took stock of the challenges
to using existing dependency and search-based IDE tools to an-
swer reachability questions. We recruited ten programmers through
LinkedIn, X, and a graduate student mailing list at the University
of Pennsylvania. All participants had prior experience searching in
large code bases. Four participants regularly worked with reposi-
tories containing hundreds of thousands of lines of code, and six
worked with repositories containing tens of thousands of lines.
Participants worked to answer five reachability questions in a
substantial Java code base (the Intelli] Community repository). We
focused on Java due to the substantial code search tools available
in the IDE. In particular, this allowed us to provide participants the
“Data flow to/from here” feature, which allows programmers to step

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

forward and back in program slices starting from a position of in-
terest. Participants were asked to think aloud. Afterward, we asked
how they typically search unfamiliar code, perceptions of current
search tools, and perspectives on Al programming assistants. We
analyzed the sessions following a thematic approach, where one
researcher conducted an initial open and axial coding pass, with a
second researcher reviewing the themes between the two passes.

Our study showed the following challenges in using traditional
IDE search tools to answer reachability questions.

Too many options. One challenge participants faced was dealing
with an overwhelming amount of information, particularly when
exploring all references to a code entity, data flow views, or call hier-
archies. Eight participants (P1, P3, P4, P6-P10) described struggling
with too many paths to consider, making it hard to know which
direction to pursue. Several participants pointed out the difficulty
of distinguishing relevant branches, with P9 likening the process
to “pulling a ball from a bag” without knowing what you will get.

As the branches grew deeper and more numerous, decision-
making burden increased. P9 reflected, “I'm expanding this far, it’s
already overwhelming. And then there’s more branches down here
to also look at” While some were willing to explore up to 10 layers
deep in the data flow (P9, P10), others reported fatigue after just 2
or 3 levels (P7, P8). Participants also desired a limit to the number of
branches available to explore. When asked about the ideal branch
factor for the data flow analysis tool, four of them cited five as the
upper bound for what felt manageable. As P7 put it, “If I'm gonna
explore by myself, five should be enough for me”

Seven participants (P1-5, P7, P8) desired the ability to filter
results. The tools they used often lacked the ability to hide irrelevant
results or highlight particularly relevant ones. Participants wanted
to filter based on only relevant code variable names (P2, P5, P7, P8),
constructs like assignments or function calls (P2-5, P7), or classes
of files (P1, P3).

Insufficient context. Relatedly, the results returned by tools like
“Find Usages” could lack the necessary cues to steer choice. Many
results showed a single line of code without additional contextual
lines of code. P9 wished for “a short description of what this line
does... like this line transforms or checks if a parameter is not null,
just a very short phrase” Others wanted semantic summaries that
aligned with their question or goal. P8 suggested, “If we find the
right place, [the tool] can also explain it to me... help me to under-
stand more about this parameter object.” Five participants (P4, P6,
P8-10) imagined intelligent systems that could summarize possible
paths or highlight the most relevant ones based on their current
question. P6 described, “Maybe the natural language interface can
help me look for one of these branches... and at least generate
some code explanations.”

Four participants (P3-5, P7) desired visual representations of
code relationships, especially when navigating complex call graphs
or tracing data flow. Instead of inspecting raw lists or deeply nested
hierarchies, they wanted tools that laid out relationships between
functions, classes, and data flows to make exploration more intuitive.
P4 remarked wanting representations of program flow where “you
could see them diverging and then coming back together, like a
system.” P7 asked for visual cues to help them focus on significant
parts of code snippets, such as where data is mutated.
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Tracking progress. Participants sometimes found it difficult to
keep track of their progress. Five participants (P2, P4, P8-10) de-
scribed losing their place or struggling to return to paths they had
previously explored. P4 shared, “I'm having a really hard time keep-
ing track of what path I've been down, what path I want to go down
next... And it looks like it will never end” Tools could also lead
to cycles, where developers were confronted with locations they
had already searched. Six participants (P2-5, P7, P8) mentioned
that circular paths and duplicated results were difficult to detect
with the existing tools. P2 described the suitability of breakpoint
debugging-style exploration for this kind of exploration, telling
us “The breakpoints are actually better because they give us a top-
down instead of a bottom-up approach. With breakpoints, we can
go forward or backward in execution, but static trace tools just
expand everything without showing the sequence clearly”

4 Design

Based on our formative study, we derived several motivations for
improved editor tooling for answering reachability questions:

D1. Reduce choice. Tools should reduce the decision space. It
might do so by filtering out irrelevant paths and prioritizing high-
value paths. Effective tools may rely on knowledge of what lies in
a candidate path to make well-informed decisions.

D2. Contextualize findings. When showing search results, tools
need to provide sufficient information for the user to put them in
context. This might be done with brief summaries, code context, or
cues of how snippets connect to each other.

D3. Support orientation. One role a tool can play is in helping
a programmer orient to the code base. They can record starting
points of search, support logical stepping through the code, convey
progress through a path, and avoid loops.

4.1 A Notional Model for a Trailblazing
Assistant

Based on these motivations, we designed Trailblazer as a tool that
brings together the tools of the IDE and Al to assist in the answering
of reachability questions. Given that developers do not currently
have tools like this, we found it useful to articulate a notional model
of how such a tool works. Here is that notional model.

Should a developer have a question, they can ask it of Trail-
blazer.! Trailblazer launches an intelligent agent. The agent ex-
plores the code base to answer the user’s question. It starts at the
user’s selection and then begins to look for answers to the question.
As it does so, it refines the question into smaller and more concrete
questions. The agent uses the standard tools of the developer’s IDE,
like “Go to Definition” and “Find All References” to look for code
to explore. As it does, it tracks relevant findings and shares updates
with the developer. It shares the fruits of its search in the form of a
conventional answer, a “tour” of key code locations, and annotated,
replayable walkthroughs of paths to those key locations.

! A metaphor for trailblazers that pass through the thick woods while blazing a path
behind them that will be easier for those behind them to traverse.
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4.2 Interface

The primary innovation of Trailblazer is its interface for making
sense of code. The interface includes several key components. Their
arrangement is depicted in Figure 2, for a developer who has asked
the question “How is scrolling disabled when a modal is shown?”
about the Material UI React components library.?

Question asking. Trailblazer is an extension to VS Code. As such,
it is invoked from the standard command palette. When invoked, a
dialog appears where a developer asks their question.

Status monitoring. To make developers aware of progress, Trail-
blazer provides continuous real-time updates (Figure 2, @). It reports
when it is searching for new code snippets, deciding what to do
next, formulating answers, and other essential steps.

Answer. The entry point to Trailblazer’s output is a natural lan-
guage response designed to resemble the typical format of Al re-
sponses. It serves as a high-level summary answer and gateway
into deeper exploration. The answer is designed to be very concise,
as developers are meant to save deep engagement for the tour and
walkthrough. An example answer appears in Figure 2, @.

Descriptive tour of code. Trailblazer provides a concise tour of
code snippets that collectively answer the developer’s question
with discovered snippets from the code. It is designed to present a
small, representative set of locations to reduce the burden of making
decisions (D1) while preserving essential context. For example, in
the scenario in Figure 2, the tour conveys a couple of locations
related to how scroll locking occurs when modals appear. One
location checks whether scroll locking is enabled. Another location
describes the function call that adjusts container styles. And a third
location presents the statement that sets overflow = ’hidden’
on the “locked” content container (Figure 2, ®). Together, these
locations form a coherent explanation that no single snippet can
provide on its own.

Jump to the code. Each finding in the descriptive tour includes a
link to open the corresponding location in the code editor (Figure 2,
), helping get more familiar with the code. Viewing the full code in
the editor puts the high-level takeaway in context with the broader
structure of the program (D2).

Walkthrough of the code. When answering a reachability ques-
tion, developers often need to know not just where the answer
is, but how it was found. The walkthrough feature in Trailblazer
supports this need (Figure 3). It presents replayable traces of the
agent’s exploration up to each of the key snippets represented in the
descriptive tour. Starting from the code location where the devel-
oper invoked the tool, the walkthrough steps through the shortest
acyclic path to a selected code snippet from the descriptive tour.

Each step in the walkthrough shows a small snippet of code
with a few surrounding lines of context. It is also accompanied
by a brief explanation of how the agent reached that location
(e.g., “I found props, which looked important and is related to

2A more scenario-centric view of the interface can be accessed in the usage scenario
in the Appendix B and the accompanying video figure.
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Searching for answer to "How does the ModalManager prevent scrolling of other

on-screen content when a modal is "mounted" to the screen?"

o Status : Finished

Starting point mount(modal: Modal, props: ManagedModalProps): void {

9 The generated answer

The ModalManager prevents scrolling by using the handleContainer function t
set container overflow to hidden when a modal mounts.

Hide tour

9 Descriptive tour of code

Container Handling

The function handleContainer is invoked to adjust the container’s styles (e.g.,
setting padding and overflow) upon modal mount. & M walk me here

Overflow Locking

The code directly sets scrollContainer.style.overflow to hidden tolock

scrolling when the container is overflowing. |

i | Mwalk me here

4

(o]

eJump to the code
scrollContainer.style.overflow = 'hidden';

9 Walkthrough of the code
@ | started here. Then | started to look for information

mount(modal: Modal, props: ManagedModalProps): void {

ModalManager.s, line 249 & »

@ | decided to look for more information about modal.

@ | decided to look for more information about Modal.

Q

Figure 2: Trailblazer’s interface. On the left is the Trailblazer interface, and on the right is the developer’s code. The interface shows

continual readouts of its status during search (@). When it finds an answe

1, it first presents a concise, natural language summary (). Then it

provides a descriptive tour of the code that elaborates on the answer with a tour of key locations in the code that contribute to the answer
(®). Finally, it provides an annotated, replayable walkthrough tracing from the site of the question through relevant variable usages, function
calls, and control structures to elements of the answer (@, an expanded annotated walkthrough appears in Figure 3). The developer can jump
to snippets in context by clicking a button for a finding in the tour or a snippet in the walkthrough ().

handleContainer’), and a link to open the snippet in the code edi-
tor. If the snippet appeared in the tour, its description appears along-
side the code listing in the walkthrough. These descriptions clarify
the purpose of the snippet in relation to the trace (e.g., “The function
handleContainer is invoked to adjust the container’s styles...”).
As the developer navigates forward or backward through the steps,
Trailblazer brings up and highlights the corresponding code in the
editor, helping them follow the path in context. In these ways, the
walkthrough puts its findings in rich context (D2).

By default, a walkthrough begins at the point in the code where
the developer asked a question, allowing them to retrace the agent’s
path from a familiar anchor. In the scenario from Figure 2, the
walkthrough begins where the developer asked their question—at
the mount method definition—and then steps to the answer by way
of a call to handleContainer () function, eventually ending at the
line where scrollContainer.style.overflow = ‘hidden’ is set.
This walkthrough is minimal to the extent possible, representing
the shortest acyclic path the agent found to the target snippet.
This trace as a whole aims to help developers orient to the code,
while also reducing disorientation that might arise from less linear
exploration alternatives (D3).

Incremental updates. Instead of requiring the developer to wait
for a complete answer, Trailblazer displays preliminary results as
the agent explores. As soon as the agent identifies an initial path
that may lead to an answer, it presents a preliminary answer. These
updates continue in real time as the agent refines its understanding
and uncovers additional evidence. When the agent has gathered
enough relevant information, it finalizes the answer and walk-
through. Oftentimes, even preliminary findings are sufficient for
developers to get the rest of the way to the answer.

4.3 Implementation

We implemented a proof-of-concept version of Trailblazer to demon-
strate the feasibility of our interaction model. The system was
tuned for TypeScript and TSX code, which offer strong typing that
helps IDE tools reliably find definitions and references. While not a
production-ready system, this prototype reflects the overarching
architecture we believe is appropriate for answering reachability
questions. Our implementation draws inspiration from informa-
tion foraging theory (IFT, see Section 2.2,), modeling the agent’s
behavior as a forager that identifies prey, selects promising patches,
makes local decisions based on context, and presents findings with
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My walkthrough of the code

@ | started here. Then | started to look for information
mount(modal: Modal, props: ManagedModalProps): void {
ModalManager.ts, line249 &8 » a
9 @1 | decided to look for more information about modal. !
e el

@ | decided to look for more information about props.
return modalIndex;

}

mount(modal: Modal, props: ManagedModalProps): void {
const containerIndex = findIndexOf(this.containers, (item) => item.
const containerInfo = this.containers[containerIndex];
ModalManager.ts, line249 & » Q

@ This led me to this reference of props .

Container Handling

The function handleContainer is invoked to adjust the container’s styles (e.g.,
setting padding and overflow) upon modal mount.

const containerInfo = this.containers[containerIndex];
if (!containerInfo.restore) {

containerInfo.restore = handleContainer(containerInfo, props);

ModalManagerts, line 254 & » a

@ I found props , which looked important and is related to handleContainer .
const container = containerInfo.container;

9 if (!props.disableScrollLock) {
if (isOverflowing(container)) {
// Compute the size before applying overflow hidd|
const scrollbarSize = getScrollbarSize(ownerWindo
ModalManager.ts, line 100 & » Q

o M previous step M next step

Figure 3: Replayable walkthrough of code exploration. The
walkthrough begins at the code location selected by the programmer
and reveals only the relevant steps leading to the target snippet
(0). Brief annotations at key steps explain how each location was
reached (®). At each step, the corresponding portion of the code
snippet is automatically pulled up and highlighted with a light blue
border (®). Programmers can navigate through the walkthrough
using forward and back buttons, enabling them to trace the path
taken by the agent and inspect each step along the way (0).

a walkable trace. Here, we provide an overview of how the system
works, described in terms of the constructs of IFT.?

Prey. In Trailblazer, the prey is the answer to a developer’s reach-
ability question, such as “How is scrolling disabled when a compo-
nent is shown?” To guide the search more effectively, we first refine
the question using a language model, narrowing it to something
like “Which functions are responsible for disabling scrolling when
the modal is mounted?”* This helps orient the agent toward a more
clearly specified target for exploration.

Patches. In IFT, a patch represents a local area of information
worth exploring. In Trailblazer, patches correspond to specific loca-
tions in the code that may help answer the developer’s question.
For each line the agent considers as a candidate patch, the agent col-
lects surrounding context (typically three lines before and after the

30ur implementation is available at https://github.com/YanLitao/Trailblazer.
4Prompts used for question refinement and exploration selection are included in
Prompts.pdf in the supplemental material.
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o question
e refined goal

How does the ModalManager prevent scrolling?

Which functions are responsible for disabling scrolling? <———

collect patches (Find all references,
go to definition, AST analysis...)

216 add(modal: Modal, container: HTMLElement)
epatches 249 mount(modal: Modal, props: ManagedModalProps)

258 remove(modal: Modal, ariaHiddenState = true)

{

oprioritized patches mount(modal: Modal, props: ManagedModalProps)

v
PR N
have findings| .~ ¥ ™

e update memory

keep looking
preliminary answer answer
prey answer sufficient
6 walkthrough o walkthrough
° °
Le Le

Figure 4: Implementation. Trailblazer simulates an information
forager to answer reachability questions. It refines the user’s ques-
tion (@ and @), identifies patches using IDE tools (), and selects
which ones to explore next (®). The system maintains a memory
of visited paths (®) and assembles its findings into a generated
answer, descriptive code tour, and step-by-step walkthrough (®). It
reports out once the accumulated findings are sufficient to answer

the question (@).

line) to help programmers better understand the meaning. Patches
are created using static code dependencies gathered by IDE-based
tools. These include reference lookups (e.g., where a function is
called or a variable is used), definition jumps (e.g., where a variable
or function is defined), and assignment traversals (e.g., tracking
dependencies across both sides of an assignment). The agent also
descends into classes, function bodies, and control structures to
discover new patches. For example, when the agent encounters a
conditional like if (props.disableScrollLock), it follows into
the body of the condition and inspects each statement within the
block, treating them as potential patches to explore.

Choice. In IFT, foragers make sequential decisions about which
patches to pursue, guided by perceived information scent that indi-
cates the likelihood of finding valuable information. In Trailblazer,
this decision-making process is simulated by a large language model,
which selects which patches to explore next from among a list of
patches. The agent does not exhaustively explore every path. In-
stead, it selects a small number of promising patches to follow.
Unlike traditional slicing or graph exploration techniques that can
traverse all reachable paths, this approach seeks to approximate
high-value exploration with fewer targeted steps.

Memory. Trailblazer maintains two forms of state throughout ex-
ploration. First, it constructs a complete program graph that records
all visited code locations and their relationships. This graph serves
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as a persistent log of the exploration process. Second, the language
model receives a compact context that includes the original ques-
tion, any refined sub-questions, and a digest of previously visited
patches. Each patch is summarized with a short natural language
explanation and a relevance score indicating how closely it aligns
with the current goal. The system also tracks which variables have
been explored, which findings contribute toward a possible answer,
and which paths have already been followed. These representa-
tions help avoid redundant steps and support incremental progress
toward assembling a complete answer.

Reporting out. As exploration progresses, the agent regularly
evaluates whether it has collected sufficient evidence to answer
the question. It is asked whether the current findings form a com-
plete and coherent trace of the relevant execution path, without
major gaps in data or control flow. It produces a concise natural
language summary that serves as the generated answer, a set of la-
beled and annotated code snippets used to construct the descriptive
tour of code, and a trace that links these snippets together into a
walkthrough of the paths through the code base. This walkthrough
is derived by computing the shortest acyclic path from the start-
ing code to each tour snippet in the program graph, minimizing
extraneous detours. If the current findings are potentially useful
but insufficient to fully answer the question, the agent generates a
preliminary answer as well as formulates a more specific follow-up
question and continues its search.’

Optimizations. To improve speed and scalability, Trailblazer ap-
plies several optimizations. When the number of candidate patches
is more than 25, it splits them into smaller batches and processes
them in parallel using multiple LLM calls. This helps avoid input
length limits and reduces latency.

In addition, Trailblazer uses different models for different stages.
A smaller, faster model (GPT-40 mini) handles exploration steps,
while a reasoning model (OpenAI 03-mini) is reserved for gen-
erating final answers, where response quality is more important
than speed. GPT-40 mini was selected as the default exploration
model because it responds 5-10 seconds faster than the full GPT-40
model on longer prompts [47], offering a better tradeoff between
latency and reasoning fidelity. We selected OpenAI o3-mini for
final reasoning steps due to its strong performance on logical rea-
soning benchmarks like MMLU [35]. These optimizations reduced
total processing time from several minutes to roughly ten seconds,
allowing developers to receive preliminary answers quickly and
iterate without long waits.

5 Study Design

To evaluate the impact of Trailblazer on answering reachability
questions in unfamiliar code bases, we conducted a controlled
within-subjects study. We compared Trailblazer to an Al question
answering baseline. Our first question was:

RQ1. Does the tool help people answer reachability questions?

We were also interested in whether interacting with the tool
would help developers better orient to the code (D3). This felt
particularly important given that reachability questions often arise

SSee Section A.6 for preliminary timing measurements of answer generation.
See Appendix A.5 for a preliminary evaluation of batching efficiency.
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as part of broader program exploration [26, 27], where developers
wish to build familiarity with how code is structured and how data
or control flows through it. We therefore asked:

RQ2. Does the tool affect familiarity with the program?

Finally, we hoped to do a preliminary probe into situations in
which Trailblazer would be the most useful in practice. So, we
additionally asked:

RQ3. For what kinds of situations do programmers anticipate
Trailblazer as being useful?

5.1 Participants

We recruited 20 programmers from academic mailing lists in the
computer science department at the University of Pennsylvania. Of
these, 11 identified as male and 8 as female. Participants included
2 bachelor’s students (10%), 11 master’s students (55%), 8 doctoral
students (40%), and 1 academic researcher (5%). In terms of overall
programming experience, 47.4% of participants had more than 5
years, 26.3% had between 3 and 5 years, and 26.3% had between 1 and
2 years. Because the code base used in the study tasks was written
in JavaScript and TypeScript, we also collected their self-reported
experience with those languages. Among the participants, 36.8%
identified as beginners, 57.9% as proficient, and 5.3% as advanced.
Participants reported frequent use of core code navigation and
debugging tools in their development environments. For example,
the majority used go to definition daily or more (55%), with 85%
using it at least weekly. Participants were also asked about their
use of programming tools and Al assistants. 85% reported using
Al to help with programming on a daily basis, and the remaining
15% used it weekly. The most commonly used Al tool was ChatGPT
(used by 95% of participants), followed by GitHub Copilot (30%).”

5.2 Baseline

We selected Cursor as our baseline because it performed best in
answering reachability questions during pilot testing. Cursor is an
Al-enhanced code editor built on VS Code [10], with a chat interface
that allows developers to ask natural language questions grounded
in project context. It supports code selection for added context and
returns answers with inline explanations and clickable code links.
During the study, Cursor used the GPT-40 model, its most capable
option at the time of testing. Prior to the study, we allowed Cursor
to index the full code base to ensure fair comparison. We did not
include a separate condition for using standard IDE tools alone,
because participants were allowed to use these tools freely in both
study conditions. This choice reflects realistic usage patterns, where
they often use IDE tools with other resources, such as Al assistants,
to answer complex questions.

5.3 Procedure

Each participant completed a one-hour study session. To minimize
demand characteristics, we referred to tools with neutral names
(“Tool A” for baseline and “Tool B” for Trailblazer). We counterbal-
anced the order in which participants used them. After consenting
and filling out a background questionnaire, participants moved

7See Appendix C.1 for participants’ reported use of programming tools.
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through a tutorial, two code question answering tasks, a code or-
dering puzzle, and an open-ended exploration task to explore their
intended use cases and question strategies with Trailblazer.

Tutorial. Before beginning the tasks, participants completed a
guided tutorial on the editor and available tools. To ensure famil-
iarity with basic navigation features, we first introduced VS Code’s
built-in tools, including Go to Definition and Find All References.
Each study tool was introduced immediately before the task it was
used in. All tutorials used the same short code file, where partici-
pants used the tool to answer a warm-up question.

Timed Code Question Answering Tasks. We asked participants to
answer reachability questions under a time limit to answer RQ1.
Each participant completed two code question answering tasks
(Task A and Task B), one with each tool. Task order was counter-
balanced to mitigate order effects. In each task, participants were
given a reachability question about a real React component from
the Material UI code base, along with a starting point in the code.
They were asked to search the code to find where the behavior
occurred and say the answer aloud when they found it, pointing
to the relevant code. If a participant’s answer was incomplete or
incorrect, the facilitator prompted them to continue exploring until
they identified the correct location and rationale. We chose these
questions based on our own curiosities while exploring the Mate-
rial UI code base. Both questions required multiple hops through
the code to answer, spread across either 1 or 2 files. Each question
typically engaged a few files spanning approximately 300 to 500
lines of code each.

One example question asked participants to investigate how the
ModalManager component prevents background scrolling when a
modal dialog is displayed. The task began at the mount method
within the ModalManager file and required tracing how props were
used to configure this behavior.® To prevent sessions from running
over, tasks were limited to 10 minutes, though most participants
completed them in less time. We stopped the timer only after partici-
pants finished explaining their answer and the facilitator confirmed
it was correct. Participants were requested to use the assigned tool
to do the task.

Code ordering puzzle. After both question answering tasks, par-
ticipants completed surprise tasks designed to answer RQ2. Par-
ticipants completed puzzle that required them to recall the code
that constituted the answer, in order. The style of puzzle was Par-
sons puzzles [36]. Each puzzle presented 10 lines of code—4-5 lines
from the correct answer and 5-6 fabricated distractors. Partici-
pants needed to identify the lines from the correct answer and then
arrange them in the correct execution order. Each puzzle had a
10-minute time limit. Participants always completed the puzzle for
Task A first, followed by Task B, regardless of tool or task order
for the question answering tasks. These puzzles were used as a
proxy for what developers learned about the structure and flow of
the code. Participants could submit their answers multiple times
and received feedback after each attempt, allowing them to revise
their solution until it was correct. This enabled us to measure both
accuracy and the number of trials needed to reach a correct answer.

8All task instructions can be found in Appendix C.2.
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Open-ended usage. Participants spent the remaining time in a
prompted exploration task (typically 10 minutes or less). They were
asked to formulate their own questions about the Material Ul code
base and investigate them using Trailblazer. If they were unsure
what to ask, the facilitator offered example topics to help them get
started. They were asked to think aloud about their findings and
reflections on where they thought the tool could be useful.

Questionnaires. Participants completed three sets of question-
naires during the session. After each question answering task, they
completed the NASA-TLX workload assessment [33] and reported
the usefulness of the tool and its individual features on 7-point
Likert scales and an open-ended question. After completing both
code ordering puzzles, they filled out a final questionnaire.

Measurements and analysis. We applied linear mixed-effects mod-
els to analyze task completion time and the number of trials needed
to complete the tasks for RQ1 and RQ2. These models estimated
the effects of several experimental factors on performance. Mod-
els included fixed effects for tool, task, tool order, and task order,
interaction between tool and task, and a random intercept for par-
ticipant ID. Significance was determined using F-tests with Satterth-
waite’s approximation of degrees of freedom [40]. For Likert-scale
questions, we used two-tailed Wilcoxon signed-rank tests [46]. All
p-values were adjusted using the Holm-Bonferroni method [19]
across all tests, and the threshold for statistical significance was set
at @ = 0.05. We analyzed open-ended responses through a thematic
analysis process [5, Chapter 5]. One author performed initial open
coding to identify recurring ideas, which were then refined through
discussion with another author to derive key themes.

6 Results

Our findings for each research question were as follows.

6.1 RQI1: Improvements in Answering of
Reachability Questions

Question answering performance. All participants completed the
task within the 10-minute limit when using Trailblazer. In contrast,
7 participants (35%) did not finish on time with the baseline. A linear
mixed-effects model revealed task completion time was significantly
lower with Trailblazer (¢ = 4.8 min, 0 = 1.7 min) than with the
baseline (z = 7.3 min, o = 3.0 min, F = 33.4, p < 0.001). No other
fixed effects, including task, tool order, task order, participants’
proficiency with JavaScript/TypeScript, or overall programming
experience, were significant (p > 0.2), and there was no significant
interaction between tool and task (F = 1.4, p = 0.72).

NASA TLX and tool ratings. Following the question answering
tasks, participants rated Trailblazer as significantly less mentally
demanding, effortful, and frustrating than the baseline, while re-
porting higher feelings of success and lower time pressure. All dif-
ferences were statistically significant at p < .01, based on Wilcoxon
signed-rank tests. Figure 6 shows the distribution of TLX ratings,
and detailed statistics are available in Appendix C.3.

Participants were also asked to rate each tools’ usefulness. They
rated Trailblazer as significantly higher (1 = 6.6, 0 = 0.6) than the
baseline (# = 5.0, 0 = 1.5; W = 3.5, p = 0.001), and also reported it
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Figure 5: Task performance by tool. Box plots show the distribu-
tion of completion times for the code question answering tasks and
code ordering puzzles, along with the number of attempts required
to solve the puzzles. Gray vertical lines within each box indicate the
mean. Participants completed the question answering tasks signifi-
cantly faster using Trailblazer compared to the baseline. Similarly,
participants solved the code ordering puzzles in fewer attempts and
less time with Trailblazer.

as better integrated into their workflow (¢ = 6.5, 0 = 0.8 vs. p = 4.7,
oc=14W =0.0, p =0.002).

6.2 RQ2: Increasing Familiarity with the Trace

Code ordering performance. One participant failed to complete
the puzzle in time with Trailblazer, compared to three with the
baseline. Puzzle completion was significantly faster with Trailblazer
(¢ = 1.9 min, o = 2.1 min, Mdn = 1.0 min) than with the baseline
(¢ = 4.6 min, o = 2.7 min, Mdn = 4.3 min). A linear mixed-effects
model found a significant effect of tool on completion time (F = 28.7,
p < 0.001). No significant interaction between tool and task was
found (F = 3.8, p = 0.28).

Participants also required significantly fewer attempts to solve
the puzzles when using Trailblazer (u = 2.8, o = 5.8, Mdn = 1.0)
compared to the baseline (¢ = 10.8, 0 = 9.5, Mdn = 9.5), with a
significant effect of tool (F = 31.4, p < 0.001). The mixed-effects
model revealed that neither JavaScript/TypeScript proficiency nor
overall programming experience had a significant effect on puzzle
completion time (p = 0.41, p = 0.42) or number of trials (p = 0.73,
p = 0.47). Notably, 75% of participants solved the puzzle in a single
trial with Trailblazer, while only 10% did so with the baseline.

Self-reports of effects on awareness of the code. Almost all partici-
pants (P1, P3-8, P10, P12, P14-20) described Trailblazer as helping
them understand the code base as a whole. For example, P17 wrote
that the ability to jump to relevant code while reading the walk-
through “was very useful in contextualizing how the code executes”.
Some participants remarked that Trailblazer informed them beyond
their questions, such as P1 who wrote that the walkthrough “would
bring me to interesting code lines that I would miss without using
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Figure 6: Perceived task load by tool. Box plots show partici-
pants’ ratings on five NASA TLX dimensions following each code
question answering task, grouped by tool. Lower values indicate
lower mental demand, frustration, effort, and time pressure, and
greater perceived success. Across all items, participants reported
lower load when using Trailblazer compared to the baseline.

the tool”. P6 wrote that the walkthrough could “help me understand
the answer and even the program”.

6.3 RQ3: Situations of Anticipated Utility

Types of questions asked with Trailblazer. During open-ended us-
age, participants used Trailblazer to ask a range of questions about
unfamiliar code. Many of these targeted high-level understanding.
Several participants described using the tool to get oriented when
first encountering a new code base, posing questions such as “what
does this function do?” (P1, P4, P5, P10), “what does this class do?”
(P9, P11), or “what is the goal of ModalManager?” (P3, P11). Oth-
ers asked for broader overviews to understand system behavior or
design intent, such as “can you give me an overview or example?”
(P16). In addition to these general questions, participants used the
tool to ask more localized questions about variables, parameters,
or usage patterns. For instance, “what does the variable hidden
mean?” (P3), “what are valid values for this field?” (P10), or “how
do I use this component in my code?” (P14). Some participants also
asked process-oriented questions about implementing functions or
tracing behavior, such as “find out all the related context of this
function, and tell me how I should implement it” (P19), or “help me
locate the key parts of the code in a long function” (P2).

As one proxy of accuracy on questions from this section, we
analyzed participants’ open-ended feedback and found that 8 par-
ticipants explicitly reported that Trailblazer successfully answered
their questions. These included questions like “What does this func-
tion (P1, P4, P5, P10) or class (P9, P11) do?”, “What parameters are
defined for the Button, and what are their uses?” (P6), and “How do
T use this switch component in my code?” (P14). These examples
are suggestive of the kinds of questions programmers might ask if
provided a tool like Trailblazer with similar training.

Anticipated usage scenarios. Participants imagined using Trail-
blazer in a range of real-world situations. Some said they would use
it when joining a new project (P5, P15) or exploring an unfamiliar
code base (P1, P10, P14, P19), using it to identify important func-
tions (P15), understand high-level structure (P1), or learn how parts
of the system work together (P10, P14). Others said they would use
it to follow how specific variables or components behave across
the code base (P1, P8, P17, P20), or to trace how certain features are
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implemented (P4, P9, P16). Some appreciated that Trailblazer could
help refine early ideas into clearer answers (P3, P6, P12).

Some also described how Trailblazer might be used synergisti-
cally with other tools. For example, P17 used it to locate relevant
code before switching to another LLM for more elaborate explana-
tions. P18 and P19 preferred copying Trailblazer’s answer into tools
including ChatGPT and Cursor to summarize or act on its findings.
P20 envisioned pairing Trailblazer with a code generator to un-
derstand functionality first, then generate implementation. These
examples suggest that for these participants, Trailblazer could serve
a complementary role to other assistive tools.

7 Discussion

In our study, Trailblazer led participants to answer reachability
questions more efficiently than the baseline (Section 6.1, RQ1). Par-
ticipants demonstrated greater familiarity of the relevant program
trace in a surprise assessment (Section 6.2, RQ2). They also en-
visioned using multiple uses of Trailblazer, including to answer
questions across unfamiliar or complex code bases (Section 6.3,
RQ3). Below, we put our findings in context, first revising the de-
sign motivations posed in Section 4.

7.1 Reexamining the Design Motivations

Behavioral and self-report data from the studies help us to assess
whether our design lived up to its motivations.

D1. Reduce choice. Trailblazer was designed to reduce decision
volume by narrowing the search space to high-relevance paths.
While we did not directly measure decision volume, we can examine
participant tool use as a rough proxy of the actions required by
participants. To characterize the gap between the possible search
space and what participants actually engaged with, we analyzed
graphs generated by the agent when run on the same question
answering tasks by an author. In Task A, the agent explored 176
unique lines of code, constructing a graph with 313 nodes and
698 edges; in Task B, it explored 307 lines, forming a graph with
336 nodes and 810 edges. Each node in this graph represents a
distinct code entity, like a variable or a function call, with edges
representing the paths connecting code entities.

Where the agent made hundreds of transitions, participants
exhibited far fewer. They jumped to a median of 18.5 and 17.5 lines
of code (including repeated visits) in Task A and B, respectively.
They made little use of in-editor navigation tools (median of 0 uses
of search, Go to Definition, and Find All References when using
Trailblazer). That participants still answered questions correctly
suggests that Trailblazer’s set of options took a large search space
and distilled it to an appropriate set of code locations. While the
agent’s path includes some branches a human developer might not
choose to follow, the system’s filtering of its exploration appears to
have been effective.

D2. Contextualize findings. Trailblazer contextualizes findings by
ordering them in several ways. It provides tours and walkthroughs,
annotates them, and allows jumping from snippets and answers to
the code. The ability to jump to code in context was commented on
widely. A majority of participants (P1-3, P6, P7, P9, P12, P14-16,
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P18) wrote that they valued being able to easily jump from explana-
tions to corresponding code. The ability to jump to code referenced
in the answer was a common point of direct comparison between
Trailblazer and Cursor, with the majority mentioning that being
able to click on links to locate code was desirable. 9 participants (P2,
P4, P5, P7, P14, P15, P17-19) described having to manually search
for code from the code blocks inside Cursor’s answer because it did
not give them a direct link that they could click. 5 participants used
Cursor’s clickable inline code references (similar to Trailblazer’s
“Go to code” links) and expressed appreciation that they made it
easy to locate relevant code.

D3. Support orientation. Our clearest indicator that Trailblazer
supports orientation is improved recall of the program flow during
a surprise assessment (see Section 6.2). Participants’ feedback sug-
gests congruence between the design and how programmers think
of code. Six participants (P5, P7, P10, P11, P16, P20) remarked that
Trailblazer “thought” how they would think. P11 wrote that “I was
very impressed by Trailblazer’s ability to step through the code
base in a manner similar to what [I] would have done as a human”.
10 participants (P1, P3, P4, P8-10, P12, P15, P16, P18) mentioned
that the structure of Trailblazer’s answer helped them understand
the answer to their question. P12 emphasized that the structure
“[helps] me understand its thinking process, allowing me to un-
derstand the answer with intermediate steps, and making it less
confusing and mentally burdensome”. P1 wrote that the “logical
flow and visualization” of the walkthrough helped “build up the
mental model to help me build the connection between each related
code line”. This stood in contrast to the baseline, where 5 partici-
pants (P7, P9-12) described that Cursor’s output was disorienting,
citing its unstructured paragraphs and lack of navigation cues.

7.2 Limitations

Our findings have several limitations. First, our evaluation focused
on two reachability questions that were heavily used as examples
in the system’s development (Task A from the start of development,
and Task B at the end). As such, these tasks represent a best-case sce-
nario for Trailblazer’s current capabilities. We intentionally tested
the system on questions we knew it could answer well, which al-
lowed us to isolate and assess the value of its interaction model.
However, this also means we do not know how Trailblazer would
behave on the full gamut of possible reachability questions. Ques-
tions that span multiple files or involve more indirect dependencies
may challenge the current agent and present more tangled answers
for users in the current design.

Second, our participants were primarily graduate students. Their
experience may differ from that of professional developers. For in-
stance, they may have less exposure to large-scale code bases, more
varied tool usage habits, and respond differently to time pressure
in lab studies. That said, most participants reported regular use of
modern IDEs and Al coding tools. While we believe that our study
captures meaningful behaviors, future evaluation with industry
developers is needed to understand how well these patterns hold
in professional settings.
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7.3 Future Work

Generalizing Trailblazers for other domains. While Trailblazer
was designed for code base question answering, we envision that
the underlying interaction pattern could extend to other domains.
The core of our design pattern is to present agent-driven search as a
trace that users can inspect and replay. This pattern is well-suited to
settings where the problem space can be represented as a graph, the
agent can access domain-specific search tools, the search process
involves many decisions, and users need to understand what the
agent did and how its choices led to an answer. This pattern could
support exploration in any domain where people seek to recover
and make sense of paths through graph-structured information.
Examples include navigating the web, tracing citation chains in aca-
demic literature, exploring entailment trees in logical reasoning, or
reviewing decision histories in workplace communication threads.

To apply Trailblazer to a new domain, several adaptations would
be required. First, the system must be able to access or construct a
graph that encodes meaningful relationships between units of in-
formation in that domain. Second, the agent must be able to operate
domain-specific tools (e.g., academic search engines or simulation
APIs) that enable search or data retrieval. Third, the search paths
must be simplified so as to avoid showing untenably long or cir-
cuitous paths. Finally, the path should support walkthrough-style
interaction where intermediate steps can be inspected with con-
textual cues and connections to the answer. Ideally, walkthroughs
would resemble the paths that users themselves might naturally
follow when exploring the space.

Consider the domain of scientific discovery. A Trailblazer-like
system could help a researcher investigate why a new material
exhibits a particular property by first building a graph of related
concepts, prior findings, and outputs from material simulations.
The agent could use domain tools such as academic search engines
or computer simulation libraries to gather evidence, traversing the
graph in order to identify leads. Like Trailblazer, it would follow
informative paths while avoiding redundant or low-value branches,
then assemble its findings into a step-by-step walkthrough. This
walkthrough would include the final explanation as well as interme-
diate steps, such as which hypotheses were explored, which papers
were read, and what simulation results supported the answer. The
system would reflect a researcher’s own inquiry process, while
keeping its reasoning transparent and easy to inspect.

Collaborative human-agent exploration. Improving collaboration
between developers and Al agents is an important direction for
research in Al-based software engineering. While Trailblazer cur-
rently operates autonomously, developers often want to stay in-
volved in the search process. They may prefer to perform much of
exploration themselves. In other places, they may be particularly
well-posed to find a logical leap inaccessible to an agent. One area
for future work is designing systems where the agent can turn to the
human for help when it encounters ambiguous or low-confidence
situations. For example, when faced with multiple plausible direc-
tions, the agent could pause and present a decision point for the
developer to weigh in. Conversely, perhaps a developer could in-
voke agents to do search in the background in increments while
they themselves search, with opportunities for the two to con-
tinually share their findings. Building these kinds of interactions
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raises design questions about how to represent uncertainty, how to
manage interruptions and task coordination, and how to maintain
shared understanding of the current search state.

Scaling Trailblazer to explore large code bases. To make Trailblazer
more usable beyond a proof of concept, it must be able to handle
larger and more complex code bases. In repositories with millions
of lines of code, the system may need to reason over thousands of
exploration options, requiring performance optimizations to ensure
responsiveness at scale. This will require integrating a more robust
static analysis engine that can handle cross-language dependencies,
resolve dynamic code references, and support efficient selection
among large sets of candidate choices.

8 Conclusion

In this paper, we introduce Trailblazer, an interactive tool that helps
developers answer reachability questions by presenting code base
exploration findings as a step-by-step trace through the code. Rather
than returning a flat response or a list of locations, Trailblazer
presents answers as replayable, annotated traces that reveal how
each piece of evidence was found and how they connect. Our study
showed that this approach enabled participants to answer questions
more efficiently and develop more familiarity of the program flow
compared to an Al programming assistant baseline. In this way, our
work provides a template for trace-based explanations of Al-assisted
search in a domain that involves complex, structured information
where transparency of the search process is essential.
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Implementation Details

Model Assignment by Task

Trailblazer uses a modular prompting architecture, assigning dif-
ferent models to different steps of the pipeline based on task com-
plexity. Lightweight models such as GPT-40 Mini are used for fast-
response stages, including refining user questions into concrete
sub-questions (Task A, see Section A.3), selecting which variables to
explore and which tools to apply (Task B), and scoring the relevance
of exploration findings (Task C). For reasoning-intensive steps like
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generating the final answer and deciding whether exploration is
complete (Task D), the system employs more powerful models such
as 03-mini.

A.2 Patch Mining

To simulate a foraging process over the code base, Trailblazer gen-
erates small, structured units of code context as patches. It uses a
combination of IDE APIs and static analysis. Patches are centered
around specific lines of code, typically including three lines of code
both before and after the relevant line, providing surrounding con-
text to aid understanding. These patches are generated by invoking
standard VS Code APIs, including “Go to Definition” and “Find
References.” These tools allow the agent to resolve relationships
between code entities, such as linking a variable to its declaration
or finding usages of a function.

In addition to IDE tools, Trailblazer extracts dependency relation-
ships from the code by analyzing assignment statements. Specifi-
cally, it traverses both sides of an assignment (e.g.,inx = y + z)
to identify dependencies. This is implemented using the TypeScript
Compiler API, which provides access to the abstract syntax tree
(AST) for each file. The system descends into control structures
such as if, class, and function blocks to recursively analyze the
variables and statements nested within. It also handles destructur-
ing assignments and parameters in function calls, expanding these
patterns into their constituent variable references.

A.3 Prompting Workflow

Trailblazer operates through a modular prompting pipeline, with
each stage responsible for a distinct step in the exploration process.
The workflow consists of four primary tasks:

e Task A: Refine question. The system refines the user’s
initial query into a more precise and actionable sub-question.
This step helps the agent decompose high-level questions
into manageable goals, often phrased in terms of specific
functions, variables, or behaviors.

e Task B: Choose patches to explore next. Given a refined
sub-question and a set of previously identified code loca-
tions, the agent decides which variables to explore next. For
each variable, it chooses an appropriate tool (either “Go to
Definition” or “Find References”) and justifies its decision
based on how it might help answer the question.

o Task C:Rank patches. After exploration, the agent receives
the resulting patches and assesses their relevance. It assigns
a binary score indicating whether each patch is useful and
generates a concise summary of what was learned.

o Task D: Reporting out. The agent evaluates whether it has
enough information to answer the original question. If so, it
constructs a structured output including a short summary,
annotated citations of relevant code, and a trace linking them
together. If not, it refines the question and returns to Task B
to continue the loop.

In addition to these core prompts, Trailblazer includes mech-
anisms for error handling, schema enforcement, and generating
fallback strategies when outputs are incomplete. These measures
ensure robustness and allow the agent to adapt when exploration
does not go as expected.
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A.4 Exploration Graph Structure

As Trailblazer explores the code base, it constructs a graph to store
how different patches relate to one another. This exploration graph
helps structure the final walkthrough shown to users.

The graph includes nodes and edges. Each node in the graph
represents a specific code entity, such as a variable or a function
name. Nodes store metadata such as the file URI and line number,
the code context at that location, the key variable or function, and
the tool used to reach it. Edges capture the relationships between
nodes, reflecting how exploration flows across the code. It contains
a source node, a sink node, and the tool used to reach the sink node.

When generating the walkthrough, the traces are generated by
building a minimum spanning tree through the graph, prioritizing
coverage and simplicity. Each trace is the minimal path from the
starting point to the node shown in the tour. To prevent redundant
or confusing paths, Trailblazer minimizes cycles by tracking visited
nodes and merging duplicates as they appear.

A.5 Latency Comparison for Batch Processing

To evaluate the effect of batching on latency, we conducted a simple
experiment simulating the conditions of Task A in our user study.
One of the authors ran the tool on a question similar to Task A,
comparing two configurations: processing 100 patches sequentially
and in batches of 10. In the sequential setting, the tool processed
patches one at a time using separate LLM calls. In the batched set-
ting, the patches were grouped into 10 batches of 10 and processed
concurrently. We observed that sequential processing took approx-
imately 16 seconds, while batching reduced the latency to around 4
seconds. This evaluation clarifies why it is useful to batch decisions
in Trailblazer.

A.6 Answer Generation Time

To estimate how long Trailblazer takes to generate answers in prac-
tice, an author recorded the duration of answer generation during
each user study session. Since Trailblazer successfully reached the
correct answer in all sessions, these measurements offers a rough
indicator of its performance on questions of similar complexity. On
average, Trailblazer generated a preliminary answer in 23 seconds
(o = 4s) for Task A and 31 seconds (o = 7s) for Task B. The total
time to produce a finalized answer was 95 seconds (o = 8s) for
Task A and 94 seconds (o = 22s) for Task B.

B Usage Scenario

We demonstrate the major features of Trailblazer with an example
of its usage in understanding a new code base. In this scenario, Mia
is a new developer contributing to the Material Ul library. She is
trying to understand the Modal component, which shows a pop-up
dialog. In particular, she wants to understand how showing a Modal
component prevents the rest of the page from scrolling.

Asking a question. Mia has already done some investigation and
is currently examining ModalManager.mount (), which is a method
that seems to be invoked when the Modal is rendered. Instead of
continuing to trace code manually, Mia decides to use Trailblazer
to continue the investigation. To do so, she selects the code for
mount () as the starting point and asks Trailblazer “How does the
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ModalManager prevent the component from scrolling after the
Modal is shown?”

Searching in progress. After Trailblazer is dispatched to answer
the question, it works in the background while Mia is free to con-
tinue browsing code. As it does, it shows a side panel containing its
current findings. If Mia thinks the current progress does not look
promising, she can cancel the search.

Reading the answer. Mia first looks at the generated answer, which
summarizes Trailblazer’s findings. The generated answer says that
scrolling can conditionally be disabled by setting a certain container
element’s overflow style to hidden. Mia doesn’t fully understand
this answer, so she scrolls down to the descriptive tour, which de-
scribes the different important pieces of code that contribute to
the answer. Each element of the tour comes with a link to jump to
the relevant code, allowing Mia to get a better understanding by
comparing the high-level summary to the code. The two elements
of the descriptive tour are “Conditional Lock Check” (whether the
modal scroll lock is enabled) and “Scroll Lock Activation” (how the
scroll lock is actually applied).

Digging deeper. Mia wants to know more about how scrolling is
disabled, so she clicks on Walk me here next to the “Scroll Lock Ac-
tivation” section. This activates an interactive walkthrough, where
Trailblazer shows each piece of code that it encountered to arrive
at a result, in the order of discovery. Since Trailblazer determines
its answer by using code tracing tools, the process resembles how
a human would manually perform this code exploration, which
makes it easier for Mia to follow.

Since Mia initiated the search from the ModalManager.mount ()
method, the walkthrough begins there. Trailblazer’s exploration
agent chose to follow the props variable through multiple hops,
eventually finding the conditional check for whether to disable
scrolling. Within that conditional block, the container’s overflow
style is set to hidden.

As Mia follows this walkthrough, she learns that the ModalManager
can track multiple containers, that it modifies the styles on the con-
tainer by accessing the HTML element directly, and that it restores
the container’s original styles when the modal is dismissed. By
following this walkthrough, Mia acquires an understanding of the
code base beyond the answer to her question.

C Lab Study Details
C.1 Participants’ Familiarity with Tools

“Find all references” was used daily or weekly by 75% of participants.
Text-based search was especially common: 85% used “search within
a file” daily or more, and 65% used “search across files” with the
same frequency. For debugging, 80% relied on print statements daily
or more, whereas breakpoint debugging was used less often, with
only 20% using it daily. Participants also reported prior experience
with other Al tools: Cursor (25%), DeepSeek (25%), Claude (15%),
and Gemini (10%).

C.2 User Study Tasks

Both tasks were designed to be approximately equal in difficulty.
When using manual exploration, each required 4-5 steps involving
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a combination of navigation tools, such as “Find All References”,
“Go to Definition”, and inspection of conditionals or function bodies
to locate relevant code. In both cases, the answer was located within
a single file containing more than 300 lines of code, and identify-
ing the key snippet typically required scanning through functions
exceeding 100 lines. These structural similarities contributed to a
comparable level of challenge across tasks. Here are the instructions
for Task A and Task B used in our study:

Instructions for Task A
ModalManager.ts line 249
mount(modal: Modal, props: ManagedModalProps): void {

Context: The file you are in is for the ModalManager class.
ModalManagers manage “modals”. Modals are pop-up dialogs that
appear on the screen. The ModalManager manages how these modals
behave. For instance, one of the things it does is prevent the rest
of the content on the screen from scrolling when a modal dialog
appears. Many of its methods take “props” (React’s standard param-
eter name for component options). The ModalManager reads these
props to configure behavior of the modals.

Task Description: Find out how the ModalManager prevents
scrolling of other on-screen content when a modal is “mounted” to
(or activated on) the screen. Remember the scenario — you are a
junior Material UI developer looking to understand this behavior
so that you can later change it.

Instructions for Task B
FocusTrap.tsx line 136

function FocusTrap(props: FocusTrapProps): React.JSX.Element {

Context: The file you are in is the FocusTrap component.

First, what is focus? In a Ul, “focused” widgets are those that
can receive user interface events. If a widget is unfocused, a user
cannot interact with it (i.e., click it, enter text, etc.).

Second, what is a FocusTrap component? A FocusTrap com-
ponent “traps” the focus on a set of Ul widgets. When you wrap
a widget in a focus trap, it forces focus to stay on that widget. In
doing so, it keeps focus from going to other Ul elements outside
of that widget, so that the rest of the UI becomes effectively non-
interactive. When a FocusTrap is dismissed, it has the possibility
of returning focus to where it was in the UI before.

Task description: Find out how the FocusTrap restores focus
to the UI widgets that were previously focused when it is closed.
Remember the scenario — you are a junior Material UI developer
looking to understand this behavior so that you can later change it.

C.3 Additional Quantitative Results

NASA TLX items. Participants rated Trailblazer as significantly
less mentally demanding (@ = 2.2, 0 = 1.2) than the baseline
(H=410=14W = 6.0, p = 0.002), and reported feeling less
hurried (u = 1.9,0 = 1.0 vs. g =3.9,0 = 1.3; W = 3.0, p = 0.001),
more successful (¢ = 1.6, 0 = 1.1vs. g = 39,0 = 1.4, W = 0.0,
p = 0.001), and expending less effort (1 = 1.9, 0 = 1.0 vs. 1 = 4.0,
0=1.2; W =7.0, p <0.001). They also reported lower frustration
with Trailblazer (4 = 1.6, o = 0.8) compared to the baseline (1 = 2.8,
o=14W =0.0, p =0.004).
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