
When Not to Comment
Questions and Tradeoffs with API  
Documentation for C++ Projects

Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, Andrea Knight
Google, UC Berkeley, NC State University

Developers Use APIs
std::string s =
 absl::FormatTime(
 "My flight lands in Göteborg on %Y-%m-%d at %H:%M",
 landing, timezone);

A programmer calls the function FormatTime
from the C++ absl API.

Programmers use APIs all the time to save
time, improve code consistency, etc.

Writing API Documentation
std::string FormatTime(const std::string& format, ...);

// Formats the given `absl::Time`...Behavior

Usage // std::string f = absl::FormatTime("%H:%M:%S", ...

... and best practices, special cases, design rationale, etc.

To help developers use APIs, tech writers and maintainers
decide when and how to describe:

Is the documentation answering the right questions?

... We don't know... How can we know?

A Dilemma with Designing Docs

What methods can we use to collect developer questions
about API documentation?

Our Research Questions
Q1. Are C++ API header comments answering

developers' questions?

Q2. Why might answers be missing from the headers?

Q3. When does it matter that comments are missing?

• Unanswered API Questions. 9 types of questions about
low-level usage, high-level usage, and implementation.

• Why comments are missing? Resistance to update
comments for abandoned or young projects, or concerns
about bloat and confusion.

• When comments matter? If answers can't be recovered
from code, and if developers trust comments.

Findings

Bug reports? Infrequently submitted for docs.
Survey? Developers forget their questions.
Observation? Time-consuming.

Challenges to Finding API Questions

When to Prompt API Clients for Questions

// FormatTime
//
// Formats the given `absl::Time`...
// provided format std::string. U...
// the following extensions:
//
std::string FormatTime(
 const std::string& format, ...);

A header file (time.h)

When to Prompt API Clients for Questions

// FormatTime
//
// Formats the given `absl::Time`...
// provided format std::string. U...
// the following extensions:
//
std::string FormatTime(
 const std::string& format, ...);

A header file (time.h)

Method signature

When to Prompt API Clients for Questions

// FormatTime
//
// Formats the given `absl::Time`...
// provided format std::string. U...
// the following extensions:
//
std::string FormatTime(
 const std::string& format, ...);

A header file (time.h)

Comments, low-level
usage documentation

When to Prompt API Clients for Questions

// FormatTime
//
// Formats the given `absl::Time`...
// provided format std::string. U...
// the following extensions:
//
std::string FormatTime(
 const std::string& format, ...);

A header file (time.h) An implementation file (time.cc)

std::string FormatTime(const std::string& format, absl::Time t, absl::TimeZone tz) {
 if (t == absl::InfiniteFuture()) return kInfiniteFutureStr;
 if (t == absl::InfinitePast()) return kInfinitePastStr;
 const auto parts = Split(t);
 return cctz::detail::format(format, parts.sec, parts.fem,
 cctz::time_zone(tz));
}

When to Prompt API Clients for Questions

// FormatTime
//
// Formats the given `absl::Time`...
// provided format std::string. U...
// the following extensions:
//
std::string FormatTime(
 const std::string& format, ...);

A header file (time.h) An implementation file (time.cc)

std::string FormatTime(const std::string& format, absl::Time t, absl::TimeZone tz) {
 if (t == absl::InfiniteFuture()) return kInfiniteFutureStr;
 if (t == absl::InfinitePast()) return kInfinitePastStr;
 const auto parts = Split(t);
 return cctz::detail::format(format, parts.sec, parts.fem,
 cctz::time_zone(tz));
}

When to Prompt API Clients for Questions

// FormatTime
//
// Formats the given `absl::Time`...
// provided format std::string. U...
// the following extensions:
//
std::string FormatTime(
 const std::string& format, ...);

A header file (time.h) An implementation file (time.cc)

std::string FormatTime(const std::string& format, absl::Time t, absl::TimeZone tz) {
 if (t == absl::InfiniteFuture()) return kInfiniteFutureStr;
 if (t == absl::InfinitePast()) return kInfinitePastStr;
 const auto parts = Split(t);
 return cctz::detail::format(format, parts.sec, parts.fem,
 cctz::time_zone(tz));
}

This transition sometimes
indicates an API question.

When to Prompt API Clients for Questions

time.hFiles

std::string FormatTime(const std::string& format, Time t, TimeZone tz);

Code Search interface

Prompting for API Questions in Code Search

time.hFiles

std::string FormatTime(const std::string& format, Time t, TimeZone tz);

Code Search interface

Prompting for API Questions in Code Search

Query for code

time.hFiles

std::string FormatTime(const std::string& format, Time t, TimeZone tz);

Code Search interface

Prompting for API Questions in Code Search

Navigate files

time.hFiles

std::string FormatTime(const std::string& format, Time t, TimeZone tz);

Code Search interface

Prompting for API Questions in Code Search

Inspect Code

time.hFiles

std::string FormatTime(const std::string& format, Time t, TimeZone tz);

Code Search interface

Prompting for API Questions in Code Search

time.hFiles

std::string FormatTime(const std::string& format, Time t, TimeZone tz);

Which best describes
the information you're
looking for?

After a header-to-implementation transition, Code
Search asked if a searcher had API questions.

Code Search interface

Prompting for API Questions in Code Search

time.hFiles

std::string FormatTime(const std::string& format, Time t, TimeZone tz);

Which best describes
the information you're
looking for?

What question are you trying to answer about this API?

What .cc file are you looking at?

What would be the most convenient location for this information?

If API question...

Code Search interface

Prompting for API Questions in Code Search

Benefits and Limitations of
"Header-to-Implementation" Detection

+ Timely: Captures ephemeral questions.

+ Scalable: Deployable within search infrastructure,
and can be run on search logs.

- Imperfect: Needs developer input to confirm the
transition was about API usage.

- Incomplete: Currently only covers low-level
documentation in header files.

Time Path

8:00:30 time/clock.h

12:00:00 time/time.h

12:00:10 time/time.cc

Monitor Search Behavior

Survey in Code Search

?
1,147 respondents

60 API usage
questions
(full C++ code base)

Interview Searchers

What were you
looking for? How?

18 searchers

Interview Maintainers

Should your docs
answer this question?

8 maintainers

Mixed Methods Study Design

Qualitative Analysis
• API Questions: Card-sorting (2 authors)

• Interviews: Verbatim transcription, open
and axial coding of themes 
(1 author, checked by another author)

Q1. Are C++ API header comments answering
developers' questions?

Q2. Why might answers be missing from the headers?

Q3. When does it matter that comments are missing?

Closer Look at Results

Why Developers Visited Implementation

% respondents

Behavior implementation

Where to make change

Non-functional API details

 Who's working on the code

0% 20% 40% 60% 80%

API usage 5% (60 / 1,147 responses)

Q1. API questions

Sample: Collected API Questions
“What does the return value mean
and how can this method fail”

“What method to use to convert the
current timestamp into a string”

“How this API passes data to
TensorFlow session run calls in C”

Q1. API questions

... and 50+ others

Types of API Questions
Input Values

Return Values
How Do I...?

Recommended Use
Hidden Contracts

Implementation Details
Side Effects

Extension Points
Inconsistency

respondents

0 5 10 15

Q1. API questions

Types of API Questions
Input Values

Return Values
How Do I...?

Recommended Use
Hidden Contracts

Implementation Details
Side Effects

Extension Points
Inconsistency

respondents

0 5 10 15

Low-Level Usage {
High-Level Usage {

Implementation {

Q1. API questions

Q1. Do the header comments answer
the right questions?

Clearly not always. We collected 60 cases where developers
opened implementation code to check on API usage.

Writers should consider at least 9 types of questions. Most of
these aren't reported in past studies.

Q2. Why are comments missing?

Maintainer Interviews

Should your docs
answer this question?

7 maintainers

(+1 C++ core libraries maintainer)

Code Search Click
Event Analysis +

Manual Verification

2 questions

3 questions

1 question

Offline Code
Search log

analysis

Searcher Interviews

What were you
looking for? How?

Other cases of
missing comments?

18 developers

Q2. Why are comments missing?

Reason 1: Not the Right Time

Q2. Why are comments missing?

Reason 1: Not the Right Time
Too late. "It’s unlikely this will ever get changed
again... ostensibly it’s my team that’s responsible for
it, but... if you didn’t schedule this meeting I would
have forgotten this file existed."

Q2. Why are comments missing?

Reason 1: Not the Right Time
Too late. "It’s unlikely this will ever get changed
again... ostensibly it’s my team that’s responsible for
it, but... if you didn’t schedule this meeting I would
have forgotten this file existed."

Too early. Reluctance to invest in comments when
the current focus was evolving and fixing the code.

Q2. Why are comments missing?

Reason 2: Minimal Explanations

Q2. Why are comments missing?

Reason 2: Minimal Explanations
Avoiding bloat. "How often do you want to go into
details, which can be easily too much?"

Q2. Why are comments missing?

Reason 2: Minimal Explanations
Avoiding bloat. "How often do you want to go into
details, which can be easily too much?"

Avoiding misunderstanding. "...if you say something is
slow, you’ll get people writing alternatives first of all, or
not using it... "

Q2. Why might answers be missing
from the headers?

The project may be abandoned, too young, or maintainers
believe answers could add bloat or confusion.

Survey Respondents Preferred Answers in Headers
Input Values

Return Values

How Do I...?

Recommended Use

Hidden Contracts

Implementation Details

Side Effects

Extension Points

Inconsistency

0 5 10 15
API questions from survey

Q3. When do comments matter?

Survey Respondents Preferred Answers in Headers
Input Values

Return Values

How Do I...?

Recommended Use

Hidden Contracts

Implementation Details

Side Effects

Extension Points

Inconsistency

0 5 10 15

.h .cc g3doc

API questions from survey

Q3. When do comments matter?

In 61.7% of cases, it
would have been
most convenient to
find an answer in a
header—even for
some high-level usage
questions and
implementation
questions.

When Comments Could Help Interviewees

Q3. When do comments matter?

• To avoid involved code inspection. 2 / 6 interviewees
with API questions searched through multiple files,
one of whom gave up.

• To understand recommended use. Protototyping
"messy code" by looking at an API's implementation,
then "making it clean" by looking in its comments.

When Comments Wouldn't Have Helped

Q3. When do comments matter?

• "... I have stopped reading comments, because the
comments are just lies."

• One implementation visit because "it was actually
documented properly, but I didn’t believe it."

Interviewees often didn't trust comments, and sometimes skipped
them, or disregarded them after reading them.

Trust Depends on Project

Q3. When do comments matter?

“... there’s those sorts of [general utilities], and those tend to
be very well documented. And then there’s the team-specific
internal code, which is all very horribly documented.”

Q3. When does it matter that
comments are missing?

When answers can't easily be recovered from code, and
when developers trust comments (which isn't always).

Takeaways

• Methods. Piloted a technique that collects API questions
professional software developers ask.

• API Questions. Revealed 9 types of questions developers
asked about APIs when opening implementation code.

• Stakes. Helped document costs, benefits, and factors
influencing whether maintainers will and should update
documentation comments.

Looking Forward

• Maintainers should refer to the questions developers ask
about APIs when writing documentation.

• Stakeholders should consider relative gain and barriers to
updates when choosing where to answer API questions.

• Others should extend our methods to gain insight into
questions developers ask during their work, and design
tools and artifacts that provide the answers.

Read the paper at https://tinyurl.com/icse18-comment

